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Abstract— The diversity of sensing options that IoT offers 

imposed requirements to evolve stream processing engines so to 

cope with highly heterogeneous and fast-pace data streams 

challenging their computing capacities. Location intelligence 

applications aim at exploiting those geo-referenced data in 

generating visualizations and dashboards that provide deep 

insights for assisting decision making in smart cities and urban 

planning. As data arriving are mostly geo-referenced and the rate 

is fluctuating in pace and skewness, computations upon streams 

should depend on approximation by applying methods such as 

sampling. Representativeness in sampling designs remains the 

pivotal concern in the literature. In spatial data streams contexts, 

it loosely means selecting proportional counts of spatial tuples 

from each group of tuples that belong to the same real geometry 

(i.e., geographically residing in the same proximity) within each 

streaming time window. This is challenging in streaming settings 

because spatial data is parametrized, loosing hence it is real 

geometries, which requires costly geometric operations to project 

them back to maps. To close this void, we have designed 

SpatialSPE in a previous work and incorporated an efficient fine-

grained spatial online sampling method (SAOS) transparently 

within its layers. In this paper, we extend SAOS (the novel 

method is termed ex-SAOS) by new features that allow efficient 

online spatial sampling on a coarser level, which is a requirement 

in smart city scenarios. Our results show that ex-SAOS is efficient 

and effectively extends SAOS for more general smart city and 

urban computing scenarios. 

Keywords— spatial sampling, spark streaming, smart city, 

stratified sampling, geohash. 

I. INTRODUCTION 

The widespread adoption of IoT devices have caused 

avalanches of geo-referenced data streams to flow endlessly 

and feed DSMSs, and specifically Stream Processing Engines 

(hereafter SPE for short) [1]. The timely exploration of those 

streams offers deep insightful analytics that assist strategic 

planning in all aspects of our lives, including city planning, 

urban computing, and health care [2]. Low-latency and high-

estimation-quality (lowering the error-bound tied to such an 

approximation) are the two greatly antithetical QoS goals that 

need to be trade off in a plausible way. Latency is the total 

time required for processing all streaming tuples in an end-to-

end way. Error-bound tied to such an approximation 

determines the estimation quality. Those QoS goals are 

colliding in such a way that lowering the latency may force 

lower sampling fractions, which in turns, lead to an 

undesirable lower estimation-quality. A well-performing 

solution would search for suitable parameters that optimize 

both QoS goals. Deterministic solutions, where exactness is 

required, cannot normally strike a plausible balance between 

those contradicting QoS goals. Thus, Approximate Query 

Processing (AQP) lends itself as an alternative probabilistic 

path that has shown promising in striking a balance between 

QoS goals. The fact that, more than often, users are willing to 

abandon tiny error-bounded estimation quality by accepting a 

small reduction in the gain profit margin for the benefit of even 

a small latency gain. In other terms, it is important to comprise 

an acceptable degree of exactness but on the price of avoiding 

the slowness induced by an exhaustive search, thus striking a 

balance between conflicting QoS. AQP depends on many data 

size reduction techniques, from which sampling presents itself 

as a leading solution. Sampling means selecting a portion of 

the total data (i.e., population) and compute an error-bounded 

statistic based on that portion. A great challenge relates to 

designing a sampling scheme that can select representative 

samples that yield estimations with rigorous error-bounds [3]. 

Most online sampling methods embrace randomness, by 

depending on sampling schemes that are based on random 

sampling. However, most interesting data are highly skewed 

(as opposed to the normal distribution). Designs that are based 

on randomness proved inefficient for non-uniformly 

distributed data such as geospatial data. In real scenarios, data 

streams are geo-referenced and being attuned to this 

characteristic in every aspect of the SPE is essential for 

location intelligence to success, including the online sampling 

scheme. Aiming at closing those gaps, in a previous study [4], 

we have designed and implemented SpatialSPE (short for 

Spatial Stream Processing Engine), together with a specialized 

online spatial sampling method SAOS, which is a fast in-



 

 

memory first-in-class online spatial sampling scheme and 

incorporated it with an emerging SQL-like based micro-batch 

SPE, Specifically Spark Structured Streaming [5], (SpSS as a 

shorthand). 

In this paper, we introduce an extended version of SAOS 

(termed ex-SAOS) that allows coalescing spatial data on a 

coarser level before applying the spatial sampling method. 

More in details, the plain method SAOS selects proportional 

data from each group of spatial points falling under the same 

fine-grained group (i.e., geohash, which is a regularly-shaped 

region in the space). On the contrary, ex-SAOS (short for 

extended SAOS) extends SAOS by allowing coarser levels of 

granularity (i.e., withdrawing points from irregularly-shaped 

polygons, known as neighbourhoods, districts, boroughs etc., 

in city management terms). By introducing ex-SAOS, we 

make the following contributions in this paper. First, we enrich 

the applicability of SpatialSPE so that we streamline its 

adoption for smart city scenarios. This is because we enable 

elasticity in the level of sampling granularity. For example, a 

coarser level based on neighbourhoods of a city. The second 

contribution is that we have built a standard-compliant 

prototype on top of an emerging stream processing engine 

(Spark Structured Steaming [5] , SpSS hereafter for short) that 

is the first-in-class providing a declarative SQL-like API for 

stream processing, following the trending layered-up software 

stack. We have further extended our previous retrofitting of 

the SpSS query incrementalizer so that it becomes aware of 

the spatial approximate queries on a coarser level (arbitrarily-

shaped polygons instead of regularly-shaped geohashes in our 

previous work). Incrementalization means that results 

accuracy will be improving stepwise. Queries include single 

spatial queries, such as approximating a study target variable 

(e.g., the ‘average’ or ‘total’ of a variable). We also support 

spatial online aggregations, such as Top-N rank geo-statistics. 

To the best of our knowledge, we are not aware of any system 

from the relevant literature that achieves these goals. 

II. RELATED WORKS 

From the relevant literature, few works apply dimensionality 

reduction-based approaches such as the works by [6-8]. 

Nevertheless, those are compute-intensive and thus are 

considered inapplicable in distributed online computing 

deployments. As a clear example on dimensionality reduction,  

[9] have designed a method for finite populations, which they 

term as generalized random-tessellation stratified (GRTS) , 

which is based on transforming the two-dimensional into a 

lower-dimensional survey space. Thereafter, arbitrarily 

ordered spatial addresses are generated and a systematic 

sampling is applied to withdraw a well-balanced random 

representative sample. The idea resorts to the fact that 

geometrically-nearby objects which are proximate in the two-

dimensional planar geometry end up in nearby locations when 

mapped to a one-dimensional counterpart. However, we argue 

that well-spread sample does not directly imply well-

representativeness, where the systematic module can unfairly 

ignore some regions while withdrawing the samples.  Along 

the same lines,  [7] introduces a sampling method that depends 

also on a dimensionality reduction approach that is based on 

space-filling curves. They depend on the ordering that is 

offered by space-filling curves so that contiguously numbered 

points are representing a well-balanced spatial sample. Those 

works from the literature are inapplicable for distributed 

computing environments. They are not able to achieve 

incremental geo-statistical computation approximation results 

that improve stepwise as time ticks forward. To close that 

void, in a previous work, we have designed SpatialSPE, a 

spatial processing engine with a specialized spatial-aware 

sampling method (SAOS) [4] . SpatialSPE has introduced 

incrementalization over geo-referenced data streams using a 

declarative API, a target that that was completely novel at the 

time. By the time, we have relied on dimensionality reduction 

approach (specifically geohash) for selecting proportionate 

spatially-representative samples. In the plain implementation 

of SAOS, we have selected the same percentage of points for 

each geohash during each time interval (known as batch 

interval in online stream processing parlance). Geohashes can 

be heuristically thought of as grid squares resulting from the 

division of flattened planar geometry (the survey area).  SAOS 

simply works by first calculating the covering geohashes for 

each administrative part of a city (normally known as 

neighbourhoods), thereafter selecting the same percentage 

from each group points having the same geohash arriving 

during a batch interval means that we approximately choose 

fair amount of points from each neighbourhood. However, 

geohash encoding is an approximation and few points may 

have the same geohash despite belonging to different 

neighbourhoods (a problem known as ‘false positives’ or 

‘edge cases’). This is caused by the approximation that 

depends on Minimum Bounding Rectangles (MBR), which 

intersect causing the accumulation of ‘false positives’ on the 

intersections. A refinement step is needed then in case we are 

interested in specifying to which space region a point belongs 

in real geometries. 

To close this gap, in this paper, we further extend SAOS 

(we term the new version as ex-SAOS) so that we discard the 

‘false positives’ before performing the sampling. In this way, 

we guarantee that we exactly are selecting the same proportion 

of points from each polygon (city official administrative 

divisions such as neighbourhood, boroughs, districts, etc.,). 

The new design we envisaged by ex-SAOS is targeting smart 

city scenarios, where cities are normally divided by 

municipalities into administrative parts (known as 

neighbourhoods, boroughs, districts, etc.). Our ex-SAOS 

method is general and can be applied to city administrative 

divisions of any kind and shape. 

III. THEORETICAL FOUNDATIONS 

A. Short Primer on sampling 

Sampling loosely means selecting a miniature of a population 

aiming at estimating a population quantity (e.g., ‘average’ or 

‘count’ of a target variable). Population is all units present in 

a survey region. For instance, ‘all trees in a forest’, where 

sampling is normally applied for estimating the ‘average tree 

basin size’. Estimators are tied to variance statistics that 

measure their accuracy [10] . The sampling design specifies 

the way we select sampling sites and samples from a 

population. Good designs are those that can select 

representative samples, in which case samples are considered 

microcosms versions of populations they are representing. 

Those samples are expected to be used for yielding estimates 

with a known degree of accuracy or confidence, thus avoiding 



 

 

sampling biasedness by not overlooking some groups of the 

population [10]. The degree of accuracy is measured normally 

by applying Standard Errors (SE) which appear because of 

depending on a sample instead of the population for 

calculating target variable’s estimates. 

The two most widely adopted sampling design in the 

literature are simple random sampling (SRS) and Simple 

Stratified Sampling (SSS). SRS assigns equal selection 

probabilities to all units of a population. It then assigns labels 

to every unit and selects labels arbitrarily until reaching the 

sample size threshold.  On the other side, SSS selects 

proportional units from each group set in a stratified 

population. Sampling students from schools, we take 50% 

boys and 50% girls, where boys and girls are stratum in this 

case. In short, the distinction between the two designs is that 

SSS applies SRS within each group (stratum) in the population 

[11]. 

B. Spatial Online Sampling Designs 

Applying purpose-built sampling designs to geo-referenced 

data is known as spatial sampling, and it is widely adopted in 

a variety of real-life domains such as environmental 

monitoring [12] . It can be loosely defined with a ternary 

(𝜓, ℑ, ℜ), where ℜ is the embedding geometrical space from 

which we withdraw samples, ℑ is the sampling frame or design 

(e.g., SRS, SSS) overlaying the survey area (i.e., the 

embedding geometrical space), 𝜓  is a statistic applied for 

estimating a target variable (e.g., ‘total’ and ‘mean’ of a target 

variable). The proper choices of ℑ and 𝜓  heavily affect 

appropriateness of a spatial sampling design [12]. Reducing 

the sampling variance in spatial settings means selecting 

spatially representative samples, which take the spatial 

characteristics into considerations, such as the spatial 

distribution of the objects in the survey area [13]. This is 

normally achieved by preserving the so-called spatial co-

locality [14] . Thus, respecting Tobler's first law of geography 

which lays down the foundations of spatial co-existence of 

objects in real geometries, stressing the fact that nearby spatial 

entities are more autocorrelated than those far apart [15]. A 

heuristically valid solution for preserving such co-location 

trait is by imagining the earth flattened out as a two-

dimensional planar irregular grid-like representation, 

thereafter sampling proportional quantities from each group in 

each subregion of that embedding space (representing cell or 

polygon in a grid-based representation overlaying the study 

area), which normally leads to accountable statistical 

estimations with minimized errors [12, 15]. Estimation quality 

is a highly enforced QoS goals in SLAs for all smart city 

applications. Thus, requiring solutions to adapt to a predefined 

set of QoS goals. In the case of estimations that are based on 

sampling for example, this could be achieved by lowering the 

estimations variances, which, in turns, leads to lower SEs. A 

contradicting accompanied QoS target is normally lowering 

the latency. Those stretched contradicting QoS goals are 

hardly achieved by SRS-based designs applied in smart cities. 

Even if it, by chance (based on a specific data distribution), 

performs well at times, it fails at most other times. This is 

simply because SRS-based designs overlook study regions by 

selecting disproportionally unfair number of entities from each 

group of naturally stratified study area such as spatially-rich 

survey areas. 

The overarching traits offered by stratification-based 

sampling designs have encouraged us to adopt a stratified-

based design for selecting well-representative samples from 

environments that are rich with patchy spatial distributions, 

where spatial objects are normally clumped into few patches. 

This is based on the observation that spatially co-located 

objects share the same characteristics normally [16, 17] . Thus, 

applying a stratified-like design means selecting 

proportionally fair number of samples from each group in the 

spatial population. Having said that, selecting well-

geographically spread-out samples is known to yield better 

estimation for study target variables. We term samples 

satisfying those properties as spatially representative samples. 

Online sampling imposes harsh constraints that do not 

normally affect designs operating on data-at-rest. We term 

designs that are operating in non-stationary (data-in-motion) 

anisotropy data streaming settings as spatial online sampling 

methods. SPEs process infinite streams of big data by either 

applying a record-at-a-time stream processing or micro-batch 

processing models. In this paper, we focus on the latter, where 

streaming data is gathered into temporary in-memory 

parsimonious storage every small-time interval (known as 

‘batch interval’ or ‘trigger interval’), thereafter, the processing 

pipeline is applied to each micro-batch independently. The 

first requirement is then being able to adapt traditional 

sampling designs so that they can efficiently operate on often 

temporally and pace-wise fluctuating spatial data streaming 

flows. One of the demanding requirements, for example, is 

being able to incrementalize results obtained online by being 

able to build them up gradually as new data arrives taken into 

consideration that the retention policy may not allow to store 

historical streaming data for future re-computation. For 

example, in time-based micro-batching window semantics, an 

‘average’ of a target variable should be updated after each 

batch interval, thus incrementalizing it. 

IV. EFFICIENT APPROXIMATE PROCESSING FOR SMART CITIES 

A. Usage Model and Baseline System 

Strategic planning managers in municipalities of 

metropolitan cities need smart software designs that enable 

them to easily comprehend the big picture so that they can plan 

for more sustainable city resources. This is normally achieved 

by serving high-level views of aggregations of the facts 

inherited from huge amounts of data on the form of dashboards 

and heatmaps. Those target outcomes pass through complex 

pipeline software engines, for example an application of 

complex clustering algorithms [2].  Map rendering with a full 

population overlayed on parsimonious space-constrained 

devices could easily turn the view unclear, thus hindering the 

decision-making process. This is normally caused by the fact 

that spatial entities gather mostly in specific places at same 

times affected by autocorrelation properties.  

Consider a toy example of an interactive geospatial query 

that requests to interactively generate heatmaps of “human and 

vehicles in-motion grouped by district in the city of Rome in 

Italy”. In a rush hour, were objects are normally clumped into 

few districts (such as city centre) may easily results in a clutter. 

In this simple case, a natural solution is spatial online sampling, 

where we select spatially representative samples from each 

neighbourhood (boroughs, districts, and any other irregularly 

shaped regions of the administrative divisions of a city) 



 

 

independently. Our baseline system is a spatial online 

sampling design that selects proportionally fare counts of 

spatial entities from equally-sized and equally-shaped spatial 

regions. Our baseline is a sampling method that we have 

designed in previous work (termed as SAOS [4]). Imagining 

Earth flattened out, SAOS divides the survey geometric area 

into equally-sized and regularly-shaped (squares) regions of 

specific length. It does so, by overlaying the study area with a 

regular grid, thereafter, imposing a z-order curves-based 

indexing known as geohashes. Geohash 1  is simply an 

approximation dimensionality reduction approach that 

transforms GPS coordinates (latitudes/longitudes) into a 

single string representing regularly-sized and shaped squares 

in a grid, where geometrically proximate points have the same 

geohash, thus residing in the same geohash-represented square 

in real geometries [18]. This is normally susceptible to a 

degree of inaccuracy where ‘false positives’ result from two 

points falling far apart in real geometries while having the 

same geohash. This is caused by the fact that grid-based 

division of flat geometry (that is applied by SAOS) assumes a 

perfectly flat surface, thus causing distortions near the earth 

poles [19]. Geohash was selected in our previous work as it is 

the computationally cheapest dimensionality reduction 

approach among others (including googles S2 2  and Uber’s 

Hexagonal Hierarchical Geospatial Indexing, H33) To close 

this gap, in this paper we design an extended version of SAOS 

(we term the novel method as ex-SAOS) and incorporate it 

within the layers of SpatialSPE so that SAOS and ex-SAOS 

reinforce and enrich each other without their limitations. In 

addition to this baseline, ex-SAOS is compared to an SRS 

analogous design that samples randomly with equal inclusion 

values for all points in the sampling area, thus unduly 

overlooking regions, resulting in maps that are not well-

representing distributions in real geometries, which negatively 

affects the decision making in smart cities. This usage model 

communicates the necessity for an online spatial sampling 

design that considers arbitrarily-shaped regions in a city. 

B. Incorporating ex-SAOS into SpatialSPE 

To efficiently be able to draw spatially representative 

samples from arbitrarily sized regions in a study area, we have 

designed and extended version of SAOS (the new version is 

termed as ex-SAOS, for extended-SAOS) and incorporated it 

within the layers of SpatialSPE as illustrated in the context 

 
1 http://geohash.org/ 
2 https://s2geometry.io/ 

diagram of figure 1.SpatialSPE receives the online spatial 

query in addition to QoS goals (expressed as estimation 

quality, latency, and throughput targets). It also receives a 

sampling rate (e.g., calculated through an external controller). 

It worth noticing that sampling rates are served to the system 

as an external input, we are not providing any cost model that 

feeds a controller for mapping QoS (such as lowering latency 

and maximizing resource utilization) goals into an adaptive 

sampling rate.  The incorporation works as follows. First, a file 

is served to the system representing the embedding space from 

which points will be withdrawn. The file contains polygons 

representing the administrative divisions of a city (known as 

neighbourhoods, boroughs, districts, etc.,). This file comes in 

many formats (including GeoJSON and shapefiles 

representations). We explode this file in a way that we 

generate a list of covering geohashes for every polygon. From 

the other side of the system, raw geo-referenced spatial points 

arrive (including GPS coordinates in the form of longitudes 

and latitudes). Every batch interval, a micro-batch is formed 

from a group of arriving tuples, those tuples are fed to ex-

SAOS, which then proceeds as follows. It first applies a 

geohash transformation method (a cheap version having linear 

complexity) to all tuples of the micro-batch. A super quick 

spatial join algorithm from Spark’s Magellan 4 is then adapted 

so that we join tuples in the micro-batch with the exploded 

polygons file (city neighbourhoods, boroughs, districts, etc.,). 

The result is a new micro-batch of tuples with a field that 

specifies to which polygon each tuple belongs. Hitting this 

point, spatial objects are readily stratified. Magellan stock 

version works with static-static join (i.e., with no streaming 

source), hence, with a tiny patch code we have retrofitted it so 

that it works with stream-static join (with one side of the join 

being a stream). ex-SAOS then selects fairly proportional 

amounts from all polygons and serves the resulting sample to 

an approximator that operates on top of Spark Structure 

Streaming (hereafter SpSS for short) , taking full advantage of 

the incrementalizer and optimizers of the underlying system in 

generating incremental query results( e.g., every time 

window) . Fair sample selection is achieved by simply 

applying SRS within each polygon independently with equal 

inclusion probabilities (thus resembling SRS without 

replacement within each polygon). Overall, ex-SAOS resorts 

to a stratified sampling design. The workflow of ex-SAOS is 

codified in algorithm 1. It is similar to the baseline (SAOS) 

3 https://github.com/uber/h3 
4 https://github.com/harsha2010/magellan 

 Algorithm 1: Extended- Spatial-Aware Online Sampling (ex-

SAOS) 

1: ex-SAOS (tuplesi, samplingMap, coverGeo, sampFraction, 

seed) 

2: r = rand(seed), sample  {} 
 //perform inner join on geohash 

3: joinResult = tuplesi.join(coverGeo) 

4: Foreach tuple t in joinResult do 

 //return the polygon to which this tuple belongs 
5:     polygon   getPolygon (t) 

     //get sampling fraction for this polygon key = fractioni, or 

zero 

6:     fractioni   samplingMap.getOrElse(polygon,0.0) 
     //toss a coin selecting items from each polygon in current 

batch 

7:     If (P (r < fractioni)) S.put(tuple) 
8: return S 

 

 
Fig. 1 SpatialSPE transparently enriched with ex-SAOS  

 



 

 

except for the fact that we sample proportional counts of tuples 

from each polygon (city neighbourhoods, boroughs, districts, 

etc.,) independently. As a way of contrast, SAOS samples on 

a granular level (geohash level). Enabling a coarser level 

through ex-SAOS is very efficient for smart city dynamic 

application scenarios. 

To take a utilitarian perspective, ex-SAOS works as the 

following heuristic overview. Imagining the earth flattened 

out, ex-SAOS overlays the survey area with an arbitrarily-

sized grid. The grid is constructed based on the polygons file 

that is served as an input. The method then continues by 

selecting arbitrarily a spatially- fair count of tuples from each 

polygon (retrieving the sampling fraction for each polygon 

from map served externally by the user). Having done that, our 

method resorts to stratified sampling, which is more plausible 

comparing with other sampling designs because it is known to 

yield better geo-statistical estimates of target variables in 

spatial patchy environments. The main essence of the method 

is the reliance on dimensionality reduction where we reduce 

parametrized two-dimensional space representations into one-

dimensional counterparts while at the same time preserving 

spatial shape and locality. 

C. Geospatial Queries Supported 

We support the same set of geospatial queries that we have 

supported in our previous work [3], but this time with a coarser 

level for the stateful aggregation queries. We support linear 

queries that estimate summary statistics for target variables 

depending on the sample instead of the population. For 

example, an ‘average’ of a target variable. Since our ex-SAOS 

sampling design resorts to a stratified-like sampling, the theory 

of stratified sampling applies [10]. Suppose we have a total of 

K polygons (each polygon is a stratum), ykj indicates a value of 

the jth tuple in polygon k. 𝑡 (that pronounced tau) is then the 

population total of stratum k (polygon in this case is a stratum). 

Then population total of a target variable y  is estimated using  

t̂exSAOS= ∑ tk
K
k=1 = ∑ Nky̅

k
K
k=1 . Thereafter the average is 

estimated using Y̅ex-SAOS= t̂ex-SAOS/N = ∑ (Ni/N)y̅
i

I
i=1  . 

Because SpSS does not provide over-the-counter plugins for 

those estimators (SpSS is not spatial-aware), we have 

transparently incorporated a patch for achieving that.  The other 

type of spatial queries we support is the stateful aggregations 

(specifically Top-N queries). For example, “top-3 boroughs in 

Bologna city in Italy where people tend to check out shared 

bikes”. Online aggregations differ from static batch counterpart 

in that the former requires managing state between batch 

intervals, thus achieving a consistency.  

To quantify the uncertainty for linear queries, we calculate 

a relative error depending on RE = zα/2(SE(Y̅exSAOS)/Y̅exSAOS), 

where SE is the standard error, zα/2 is the upper 𝛼/2 point of 

the normal distribution. Readers are referred to our previous 

work on explanation of the derivation of the equation [3]. For 

the same group of queries, we also calculate the accuracy loss 

using the following formula: 

loss = |estimatedAverage – trueAverage| / trueAverage. For 

stateful aggregations, we apply Spearman's rank correlation 

coefficient [20] (Spearman's rho hereafter for short), which 

 
5 https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page  

measures statistical dependency between rankings of two 

variables. Specifically, we apply  ρ
rg

= 
cov(ranknos, ranksamp)

σranknos
 σranksamp

. 

V. PERFORMANCE EVALUATION AND RESULTS 

A. Deployment Settings and Benchmarking 

Dataset. We use the NY City taxicab trips datasets 5 

benchmark. We select a cohort of six months dataset (circa 

nine million tuples) representing data taxi rides for the first six 

months of 2016. We select the green taxi trip records, which 

include fields such as GPS locations and itinerary distances. 

Deployment and experimental settings. We run our tests 

over Microsoft Azure HDInsight Cluster hosting Apache Spark 

version 2.2.1. It consists of  6 NODES (2 Head + 4 Worker) 

with 24 cores. Head (2 x D12 v2) nodes , and Worker (4 x D13 

v2) nodes. Each head node operates on 4 cores with 28 GB 

RAM and 200 GB Local SSD memory, and quantities are 

double those figures for worker nodes. 

B. Results and discussion 

We have tested the extended SAOS method (ex-SAOS) 

incorporated within SpatialSPE against the previous plain 

version (SAOS). The only parameter we vary in all the tests is 

the sampling fraction. We apply the following linear query: 

“find the average trip distance of a NYC taxicab itinerary trip 

during the first six months of the year 2016” as a linear query. 

As a Top-N, we test using the following query: “what are the 

top-10 neighbourhoods in NY city in USA with highest taxi 

orders”.  Figure 2 shows a comparison for the linear summary 

statistics queries. It is evident that for parsimonious streaming 

settings which necessitate small sampling fractions (such as 

20% as shown in the figure), ex-SAOS outperforms SAOS. 

However, this benefit vanishes as we increase the bound of the 

sampling fraction. This is totally healthy, as SAOS applies 

proportional sampling fractions (equal for all groups or 

geohashes in this case) to each geohash. Geohashes in the end 

covers the polygons. As the sampling fractions increases, 

sampling on a granular level (geohash by SAOS) starts to 

perform similarly to that of a coarser level (polygon-level by 

ex-SAOS). The advantage by ex-SAOS is that it allows 

sampling on arbitrarily-sized and shaped polygons as opposed 

to SAOS. This is very beneficial in smart city scenarios and 

complex applications such as those required by 

environmentalists and in agrobiodiversity. It may be required 

for example to sample different fractions from each polygon. 

 
Fig. 2 Estimation accuracy of ex-SAOS vs. SAOS and an SpSS-based 

SRS, for linear queries. Primary access on the left shows the relative error 

(RE), whereas secondary access on the right shows the accuracy loss. CI is 

the confidence interval. 35 is the gohash precision. 
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This can easily be achieved by ex-SAOS. On the contrary, it 

requires additional work from the programmer side to be able 

to apply it to SAOS. It is also clear from figure 2 that the 

accuracy loss induced by the approximation in ex-SAOS is the 

lowest compared to the other competing counterparts (SAOS 

with various geohashes, 30 and 35 in this case, in addition to 

the SRS-based counterpart). This complies with the results 

obtained for the relative error. On average, we obtain a 

reduction in the loss that reaches 23% when using ex-SAOS 

instead of SAOS (with geohash 30) and roughly 67% using ex-

SAOS instead of SAOS (with geohash 35), in addition to 

around 70% using ex-SAOS instead of SRS-based sampling. 

Figure 3 shows that ex-SAOS outperforms SAOS (with all 

geohash settings, being 30 or 35) and the SpSS-SRS random 

sampling in term of the accuracy for the stateful aggregation 

queries (Top-N ranking geo-statistics). On average, we obtain 

4% and 5.8% gains in Top-N accuracy (rho) by using ex-SAOS 

for top ranking instead of SAOS, with geohashes 35 and 30, 

respectively. We even perform better when comparing ex-

SAOS to the SRS-based solution as we obtain 9% rho accuracy 

gain when using ex-SAOS instead of SRS-based sampling, 

which is better than the roughly 3% that we may obtain by 

applying the plain SAOS against SRS-based design. 

It worth mentioning that we have data that is highly skewed 

(which is the worst-case scenario). This means that our 

principles are applicable to less skewed data. Despite being 

highly skewed. The ‘average’ estimator has an approximately 

normal (bell-shaped curve) distribution sampling distribution. 

That is the reason that allowed us to depend on the Central 

Limit Theorem (CLT) [10] , where principles from traditional 

statistical sampling applies, specifically stratified and simple 

probability sampling theories. The same fact applies to any 

kind of less skewed data (having, by itself, a normal 

distribution or eventually resorts on its ‘average’ estimator to a 

normal distribution). This proves that similar trends in the 

results are assured for any kind of spatial datasets. 

VI. SUMMARY AND FUTURE RESEARCH FRONTIERS 

The idea that spatially-balanced sampled datasets yield 

better estimations than simple probability sampling methods is 

well established in the relevant literature. In accordance with 

that, there are some frameworks for incorporating spatial 

awareness into statistical sampling. Some methods are based 

on splitting the study area into cells (traditionally known as 

tessellation, which implies dividing the study area into 

polygons, either equally- or arbitrarily-sized) and treating each 

cell as a stratum, thus simplifying the application of stratified-

alike sampling designs, which is plausible in geo-statistics. 

However, those methods are not ready for distributed 

computing settings. Furthermore, they incorporate 

computationally expensive structures, such as tree-based 

hierarchal representation structures that renders them, despite 

being efficient theoretically, unsuitable for extension to the 

distributed computing world. On the other side, distributed big 

data processing systems are evolving fast in an unprecedented 

way, reflecting the need for systems that adapt to the 

fluctuating and oscillating pace of big datasets that show 

temporal skewness. 

In this paper, we have extended our support for our robust 

SpatialSPE spatial stream processing engine. We have added a 

new spatial online sampling method that operates on coarser-

granularity by allowing the strata to have an arbitrary shape and 

size. Stated another way, sampling from polygons instead of 

regularly and equally-sized geohashes. The novel method ex-

SAOS complements efficiently the SpatialSPE design, 

specifically for more complicated smart city and urban 

planning scenarios, which require flexibility, elasticity, 

representativeness and QoS guarantees in the spatial sampling 

designs. 
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