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Abstract—Recent research focuses on building Cloud-based 

solutions for big geospatial data analytics. Avalanches of 

georeferenced mobility data are being collected and processed 

daily. However, mobility data alone is not enough to unleash the 

opportunities for insightful analytics that may assist in 

mitigating the adverse effects of climate change. For example, 

answering complex queries such as follows: “what are the Top-

3 neighborhoods in Buenos Aires in terms of vehicle mobility 

where the index of PM10 pollutant is greater than 40”. Similar 

queries are necessary for emergent health-aware smart city 

policies. For example, they can provide insights to municipality 

administrators so that they foster the design of future city 

infrastructure plans that feature citizen health as a priority. For 

example, building mobile maps for daily dwellers so that to 

inform them which routes to avoid passing-through during 

specific hours of a day to avoid being subjected to high-levels 

PM10. However, answering such a query would require joining 

real-time mobility and environment data. Stock versions of the 

current Cloud-based geospatial management systems do not 

include intrinsic solutions for such scenarios. In this paper, we 

report the design and implementation of a novel system 

MeteoMobil for the combined analytics of information 

representing mobility and environment. We have implemented 

our system atop Apache Spark for efficient operation over the 

Cloud. Our results show that MeteoMobil can be efficiently 

exploited for advanced climate change analytics. 

Keywords— Meteorology, climate change, spatial, Apache 

Spark, smart city 

I. INTRODUCTION 

The introduction of cheap IoT devices have caused an 

unprecedented accumulation of mobility (human, vehicles 

etc.,) and other kinds of georeferenced data (such as tweets 

from the micro-blogging Twitter, and images that may be 

tagged with location where they have been taken) [1]. But 

mobility and other georeferenced data do not occur in 

isolation. Often, to be able to get useful insights from such 

data, the context that is surrounding its temporal existence is 

required. 

Context is loosely defined as any associated information that 

is useful for characterizing the situation of an object. Objects 

include people, locations, and any information that is relevant 

for modelling the correlation between dwellers the 

surrounding environment [2]. Metrological and 

climatological information are considered context.  

Innumerable scenarios in smart cities and urban informatics 

require joining metrological information with mobility data 

to get useful insights that can inform better strategic decisions 

for city planning. A canonical scenario is the case when a 

municipality administration in a metropolitan city wants to 

figure out the relationships that may exist between climate 

change and the mobility of vehicles and dwellers. In doing so, 

they aim to plan a city for a better health of citizens. For 

example, by restricting access of vehicles to specific zones of 

the city during peak hours of a busy day. This could be a 

decision that results from noticing that vehicle-caused high 

levels of Particulate Matters (PM10 and PM2.5) are generated 

in those zones, which are basically a consequence of high 

traffic congestion.  

Contextual climatology data is also georeferenced and is often 

collected by moving or in-situ stations. This implies the fact 

that joining them with mobility data requires applying spatial 

join operators, which are typically expensive [3]. In this paper, 

we present a QoS-aware Cloud-based system for joining 

georeferenced environment (e.g., meteorological) with 

mobility traces. Our system can efficiently tag mobility data 

with environment (e.g., meteorological) data at scale. Also, it 

features an SQL-alike API for simplifying queries such as 

aggregation, grouping and statistics on environmentally-

tagged mobility data. 
The remainder of the paper is organized as follows. We 

first briefly discuss the related background and literature. We 
thereafter show the design and characteristics of our system. 
In what follows, we discuss the results that we have obtained 
comparing our new methods with a representative baseline. 
We conclude the paper by relevant remarks and 
recommending future research frontiers. 

II. THEORITICAL FOUNDATIONS AND RELATED 

LITERATURE 

A. Spatial Join Processing 

Georeferenced data streams are normally served to 

processing systems as parametrized objects, typically 

represented in table-like formats [4]. For example, a point in 

a trajectory of a moving object is represented by two 

coordinates, longitude, and latitude. Moving data this way 

relieves the pressure on the network as floating points 

representations are lighter than spatial objects. However, data 



 

 

loses its original shape, requiring the receiving system to 

reconstruct it into its original shape (i.e., multidimensional), 

which implies the application of a costly operation known as 

Point-in-Polygon (PIP). PIP seeks to specify to which zone in 

real geometries a parametrized pair of longitude and latitude 

belongs [3]. Efficient join algorithms are based on a 

multidimensionality reduction approach known as filter-and-

refine. It simply works by applying a cheap filtering stage at 

first, pairing the reduced representation of a point with a list 

of values representing the covering area (e.g., neighborhoods 

in a city). This works as a quick-and-dirty sieve that leaves 

few points with uncertainty known as false positives, where 

there reduced representation version matches some of the 

representations of the covering area, while they do not belong 

to those areas in real geometries [5]. A well-performing 

multidimensionality reduction approach is the geohash 

encoding, which is based on z-order curves. It is as simple 

string representation of pairs of parametrized coordinates. 

Cloud-based efficient algorithms typically work by 

generating a geohash encoding for every parametrized pair of 

a trajectory point. Also, a list of geohashes representing each 

zone in the study area (e.g., neighborhoods in a city) is 

generated. The filtering approach then pairs each geohash-

represented point with the geohash covering list. The 

refinement stage thereafter proceeds to applying the costly 

PIP geometric operation to refine the false positives and 

specify which of them belongs to the real geometry that has 

been presumed during the filter phase [6]. Since both 

environment (e.g., meteorological) and mobility data are 

georeferenced, spatial join is an indispensable operation for 

achieving the data integration. However, since spatial join is 

expensive, novel algorithms are required to adapt so that they 

can integrate those data sources. This is so because given two 

parametrized datasets, the join is applied to each dataset 

individually. 

B. Applications of mobility-environment data integration 

There are several interesting scenarios where the integration 

of mobility and environment data is beneficial. For example, 

the work by [7] has designed a ‘Green Paths’ routing software 

for the assessment of environmental exposure to traffic-cause 

pollutants. The software features an interactive map for 

recommending healthy routes to dwellers in the Helsinki 

Metropolitan Area in Finland. However, the system is not 

optimized for joining mobility and environment data at scale 

as it is not designed to be operated in the Cloud. 

As the costly spatial join is a fundamental operation in 

dynamic smart city scenarios. Various works from the 

relevant literature have focused on optimizing the join 

processing by applying multidimensionality reduction and 

custom spatial indexing techniques. For example, in a 

previous work [8], we have designed a Cloud-based efficient 

methods for processing proximity-alike queries on geospatial 

data. The system is engineered atop Apache Spark for 

supporting QoS-aware spatial proximity queries and 

aggregations. The system has potential in scenarios that 

require joining spatial mobility and environment data and it 

can be further customized in that direction.  

In the same vein, in a previous work [9], we also have 

designed a Cloud-based storage version for optimizing the 

storage and management of big geospatial data within 

NoSQL storage databases. Specifically, we have presented 

spatial optimization layers for MongoDB. This work 

complements our work in [8] to allow most common spatial 

analytics that require storing in addition to processing of 

geospatial mobility data streams. This work also has a 

potential to be extended to a mobility-environmental data 

integration scenario. 

An important work appears in [10], where dwellers represent 

active collectors of air pollution’s measurements in few 

locations of a city. This information can then be integrated 

with mobility data to form mobile health communities for 

better health of citizens. The integrated version of data then 

can be fed to a recommender system that recommends the 

less-pollutant areas to dwellers based on their health 

condition. 

In addition, a recent work from the relevant literature by [11] 

has focused on tackling the problem of mobility-environment 

data integration from different perspective. Particularly, 

instead of joining mobility and environment data, they have 

designed a piecemeal emission model that quantifies four air-

 

Fig. 1.  Overview of MeteoMobil architecture 

 

Fig. 2.  Heuristic view of MeteoMobil 



 

 

borne pollutants including the PM10. Their framework 

proceeds as follows. It first applies a prefiltering stage to 

select points with specific speed and acceleration values that 

do not exceed a prespecified threshold. Thereafter, they 

project each point with a network graph representing road 

segments, which is analogous to solving PIP spatial join for 

each point independently. They further utilize the ball-tree 

nearest neighbourhoods’ algorithm for a quicker Haversine 

computation. Haversine is a well-known equation for 

calculating the distance between two points given their 

longitude/latitude coordinates. Thereafter, they apply the 

model that appears in [12] for calculating the microscopic 

emission resulted from a moving vehicle at each point in time. 

However, the system is not designed to join mobility data 

with other more accurate sources of environment data at scale. 

Also, it is not designed to be operated on Cloud deployments. 

III. METEOMOBIL: AN EFFICIENT SYSTEM FOR 

ENVIRONMENT AND MOBILITY DATA INTEGRATION 

In this section, we introduce the architecture and features 
of our novel system that we term as MeteoMobil (short for 
meteorological mobility). MeteoMobil is a novel system for 
tagging, at-scale, massive amounts of mobility with 
environment (e.g., meteorological) and climatological 
contextual information. It basically constitutes three main 
components: data collector, join and query processors. 

The architecture of MeteoMobil is depicted in Fig. 1. 
Georeferenced data that is coming from in-situ (or moving) 
environment (e.g., meteorological) and weather stations is 
collected by the data collector. Also, mobility data is collected 
by the same component. A shapefile representing the city is 
also ingested by the collector. After collecting all needed 
sources of data, it is fed to a geospatial encoder, which is 
responsible for encoding the mobility and environment (e.g., 
meteorological) data. It does so by reducing the 
dimensionality through applying a geohash function. Encoded 
data is then served to a spatial join processor, which is 
responsible to integrate environment (e.g., meteorological) 
data with mobility data at various levels. The result of this 
integration is a unified view of environmentally-tagged 
mobility data traces. This view is then materialized and fed to 
the query processor, which receives an environment (e.g., 
meteorological) mobility query from the user and computes 
the result interactively. Environment (e.g., meteorological) 
data is ingested as GRIB files from the source and transformed 
into a CSV file format by the data collector component of our 
system. 

In the following subsection, we describe a novel simple, 
yet effective, algorithm for joining georeferenced 
environment (e.g., meteorological) and mobility data at scale.  

A. Environment (e.g., meteorological) and mobility data 

integration at scale 

MeteoMobil features a join processor that implements a 

novel simple spatial join processing algorithm that we have 

designed. The method starts by geocoding the mobility and 

environment (e.g., meteorological) data using geohash. As 

geohash is a dimensionality reduction approach that acts as a 

quick-and-dirty sieve [13]. We utilize an approach similar to 

filter and refine approach. First, we geocode the mobility 

traces and produce the corresponding geohash of each 

longitude/latitude pair. We do the same to the environment 

data, generating a geohash code for each record. Thereafter, 

we apply an efficient spatial join method that is based on filter-

and-refinement to find out to which polygonal area (e.g., 

neighbourhood) each point from the two datasets belongs. The 

result is two datasets containing geohash representation and 

polygon (e.g., neighbourhood) for each point. Afterwards, we 

perform a simple cheap equijoin on the two datasets, joining 

the geohash-encoded and neighbourhood fields from both 

datasets. This strategy reduces the cost of the join significantly 

as it will be discussed in section IV.C (results and discussion). 

Our method is equivalent to the heuristic overview that is 

shown in Fig. 2. It resorts to overlaying corresponding maps 

of both datasets with a cheap equijoin operation. 

B. Supported Queries 

We currently support two basic groups of queries; from which 

other complex queries such as spatial clustering are easily 

constructible. 

Group1 (G1). Single queries (a.k.a. linear). We support 

single statistics queries such as the following: “what is the 

average PM10 for all neighbourhoods in the City of Bologna 

in Italy where mobility data records are greater than 3K”. 

Such kind of queries helps in characterizing and modelling 

the relationship between mobility traffic intensity and the 

concentration levels of air-borne pollutants such as PM10. 

This helps in identifying the autocorrelation and maybe 

accepting or rejecting some other factors that contribute to 

high levels of PM10 such as the availability of industrial 

factories in specific areas. For example, to specify whether 

those factories are complying with the set rules of acceptable 

limits of air pollutant’s emissions. 
Group2 (G2).  aggregation queries (Top-N). The other 

type of queries we are supporting is the Top-N, such as the 
following query: “which are the top-3 neighbourhoods in 
Bologna in Italy in terms of mobility traffic where 
concentration of PM10 is greater than 12”. This query reveals 
the Top-N regions in a city where a significant increase in 
PM10 is associated with the intensity of the traffic, thus 
helping municipalities in deciding future urban planning 
infrastructures. For example, increasing the greenery areas in 
those zones and limiting the access of vehicles during specific 
hours of the day or specific days of a week. 

IV. IMPLEMENTATION INSIGHTS 

To show the capabilities of MeteoMobil and its optimizers, we 

have engineered a standard-compliant prototype above 

Apache Spark [14]. The stock version of Spark does not 

support spatial data management, but it is an efficient 

jumping-off point for building optimized spatial layers for 

geospatial data processing [15]. 

A. Deployment Settings and Benchmarking 

This section elaborates the deployment settings that we 

have chosen to validate the effectiveness of MeteoMobil and 

its optimizers. 

Dataset. For benchmarking, we use two datasets. The first 

dataset comes from the Urban SIS [16]. It offers environment 

(e.g., meteorological) data at a granular scale of 1km2 for few 

European countries including the city of Bologna in Italy. 

Most importantly, the dataset contains the daily concentration 

values of PM10 pollutant covering the city of Bologna in 

addition to other European cities, measured in µg/m-3 units 



 

 

with a maximum value that reaches 50 µg/m-3. This data 

comes in a NetCDF file format, and our collector component 

features a module that transforms it into a more manageable 

Comma-Separated Value (CSV) format. 

The other dataset is a cohort of 500k mobility points 

collected within the ParticipAct project [17], which is a 

project that has been conducted at University of Bologna in 

Italy and aims at achieving the People as a Service (PaaS) 

vision, where people act as active collectors of data that can 

be exploited and applied to interesting smart city scenarios. 

Every spatial point has a user locational data (in planar GPS 

coordinates longitude/latitude) in addition to timestamps 

indicating times of data collection. 

Deployment and experimental settings. We have deployed 

MeteoMobil on a Microsoft Azure HDInsight Cluster hosting 

Apache Spark version 2.2.1. It consists of  6 NODES (2 Head 

+ 4 Worker) with 24 cores. Head (2 x D12 v2) nodes , and 

Worker (4 x D13 v2) nodes. Each head node operates on 4 

cores with 28 GB RAM and 200 GB Local SSD memory, and 

quantities are double those figures for worker nodes. 

B. Testing Procedure and Performance Metrics 

 

We have selected a plain representative baseline to compare 

its performance with the performance of our novel system 

MeteoMobil. The baseline system performs the spatial join 

on a piecemeal resolution, with a pairwise comparison 

pairing every mobility point with all possible environment 

points. This is a Cartesian product join which results in a 

massive result set. The baseline system first joins every set 

separately with the neighborhoods. It then pairs points from 

both datasets on their neighborhoods and point-to-point 

values (i.e., longitude and latitude coordinates). We simply 

compute the running time of both systems. The only 

configurable parameter in our system is the geohash 

precision, where we vary the geohash from 25 to 30. Geohash 

precision dictates the coverage area and the number of points 

that fall within it. A higher precision indicates a smaller area, 

and the opposite applies to a lower precision. We also vary 

the mobility data size between 20k, 100k, 250k and 500k to 

measure the pattern at which both systems perform under 

various intensities of workloads. Each experiment has been 

run ten times, thereafter we calculate the average of the 95th 

percentile. 

C. Results and Discussion 

We have tested our system MeteoMobil by comparing the 

performance of the two possible designs by which mobility-

environment data integration can be achieved.  

For both designs, we vary the data size and geohash 

precision. Then we calculate the running times and the 

number of records in the result set that results from the join 

processing. Fig. 3 shows that we obtain roughly 98% gain by 

for MeteoMobil against the baseline in terms of number of 

records in the result set, with an associated reduction in 

running time that is roughly equals to an average of 37%. This 

is easily explainable by Fig. 4, which shows the distinct 

number of geohash values and neighbourhoods for mobility 

and environment (e.g., meteorological) data. The figure 

shows that neighbourhood’s range is far smaller compared to 

that of the geohash values. This means that joining at the 

filtering stage on neighbourhood values would result in 

pairing each neighbourhood with a short range of 

corresponding neighbourhoods in the second dataset, 

resulting thus in a cost-inefficient Cartesian product. On the 

other hand, since the geohash values in each dataset has a 

larger range, pairing the two datasets on geohashes first 

would result in a smaller result set because each geohash 

value in one side of the join matches only few from the other 

dataset. 

 

We have also measured the running time of both systems 

for running an aggregate Top-N query. We specifically test 

on the following query: “which are the top-3 neighbourhoods 

in Bologna in Italy in terms of mobility traffic where 

concentration of PM10 is than 12”. Fig. 5 shows the running 

 

Fig. 3. Running times and number of records in the result set 

comparing MeteoMobile against the baseline using the ParticipAct 

and Urban SIS datasets. Parameters: geohash 30 
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Fig. 4. Number of distinct geohashes and neighbourhoods in both 
datasets. In the legend: ‘meteo_n’ is the distinct meteorological 

neighborhoods values, while ‘mobil_n’ is the distinct mobility 

neighborhoods values. 
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Fig. 5. Running times of Top-N queries, MeteoMobil against the 

plain baseline. 
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times, and it suggests that our optimized methods in 

MeteoMobil are able to achieve a significant performance in 

gain as compared to the baseline. It is natural that both 

systems show a monotonic increase in the running time as the 

data size increases. That is a significant average reduction in 

running time which roughly equals to 89%. 

V. CONCLUSIONS AND FUTURE WORKS 

In this paper, we have shown the design and realization of a 

novel efficient Cloud-based system, that we term as 

MeteoMobil, for environment (e.g., meteorological) and 

mobility data integration at-scale. MeteoMobil features a 

novel join algorithm that simplifies the integration. In 

addition, it supports SQL-alike queries which simplifies 

analytics on environmentally-tagged spatial data. This paves 

the way for the application of new queries and workloads that 

were hard to achieve before. For example, being able to 

perform aggregations on mobility data, considering the 

context (weather, climate) that is surrounding the existence 

of the points. MeteoMobil currently support single queries 

such as statistics (mean, count, sum) and aggregations. 

Our system is applicable to smart city scenarios that feature 

human health as a priority. For example, it can help 

municipalities to decide upon locations where there is a need 

to construct greenery areas in an aim to promote restorative 

environments in urban areas. This could be useful in reducing 

adverse effects of traffic pollutions on human health [18]. 

 

Future research perspective would include joining other data 

sources that may assist in getting insightful information that 

reflect the socio-spatial variations, which governs the 

selection of alternative health-aware trip routes. This requires 

joining sociodemographic data of dwellers. 

Future research efforts should consider developing Cloud-

based open-source geospatial solutions that foster a 

streamlined integration with other data sources. For example, 

since the data that need to be collected is massive and 

sometimes may exceed the processing and storage capacities, 

there would be a need for efficient spatial- and 

climatologically-aware approximate techniques (similar to 

those that appear in  [19]) for compressing and summarizing 

the data, probably before even reaching the Cloud-based 

deployment (by utilizing Fog and Edge computing). 

ACKNOWLEDGMENT 

This research was supported by the project “[H2020] 

SimDOME – Digital Ontology-based Modelling 

Environment for Simulation of Materials”, Grant agreement 

ID: 814492.  

We also would like to thank Microsoft for providing us with 

the free Microsoft Azure resources (through the AI for Earth 

project) for our project titled “Supporting Highly-Efficient 

Machine Learning Applications for Reducing the Impact of 

Climate Change on Human Health in Metropolitan Cities”. 

All the experiments for obtaining the results presented in this 

paper have been conducted on a Microsoft Azure deployment 

(as part of the foresaid project) that comprises of an 

HDInsight cluster (hosting Apache Spark). 

REFERENCES 

[1] I. M. Al Jawarneh, P. Bellavista, A. Corradi, L. Foschini, and R. 
Montanari, "QoS-Aware Approximate Query Processing for Smart 
Cities Spatial Data Streams," Sensors, vol. 21, no. 12, 2021, doi: 
10.3390/s21124160. 

[2] I. M. Al Jawarneh et al., "A pre-filtering approach for incorporating 
contextual information into deep learning based recommender 
systems," IEEE Access, vol. 8, pp. 40485-40498, 2020. 

[3] I. M. Al Jawarneh, P. Bellavista, A. Corradi, L. Foschini, and R. 
Montanari, "Big Spatial Data Management for the Internet of Things: 
A Survey," Journal of Network and Systems Management, vol. 28, no. 
4, pp. 990-1035, 2020. 

[4] I. M. Al Jawarneh, P. Bellavista, A. Corradi, L. Foschini, and R. 
Montanari, "Locality-Preserving Spatial Partitioning for Geo Big Data 
Analytics in Main Memory Frameworks," in GLOBECOM 2020-2020 
IEEE Global Communications Conference, 2020: IEEE, pp. 1-6. 

[5] I. M. Al Jawarneh, P. Bellavista, A. Corradi, L. Foschini, and R. 
Montanari, "Efficient QoS-Aware Spatial Join Processing for Scalable 
NoSQL Storage Frameworks," IEEE Transactions on Network and 
Service Management, 2020. 

[6] I. M. Al Jawarneh, P. Bellavista, A. Corradi, L. Foschini, and R. 
Montanari, "Spatially Representative Online Big Data Sampling for 
Smart Cities," in 2020 IEEE 25th International Workshop on Computer 
Aided Modeling and Design of Communication Links and Networks 
(CAMAD), 2020: IEEE, pp. 1-6. 

[7] A. Poom, J. Helle, and T. Toivonen, "Journey planners can promote 
active, healthy and sustainable urban travel," 2020. 

[8] I. M. Al Jawarneh, P. Bellavista, A. Corradi, L. Foschini, R. Montanari, 
and A. Zanotti, "In-memory spatial-aware framework for processing 
proximity-alike queries in big spatial data," in 2018 IEEE 23rd 
International Workshop on Computer Aided Modeling and Design of 
Communication Links and Networks (CAMAD), 2018: IEEE, pp. 1-6. 

[9] I. M. Al Jawarneh, P. Bellavista, F. Casimiro, A. Corradi, and L. 
Foschini, "Cost-effective strategies for provisioning NoSQL storage 
services in support for industry 4.0," in 2018 IEEE Symposium on 
Computers and Communications (ISCC), 2018: IEEE, pp. 01227-
01232. 

[10] I. M. Aljawarneh, P. Bellavista, C. R. De Rolt, and L. Foschini, 
"Dynamic Identification of Participatory Mobile Health 
Communities," in Cloud Infrastructures, Services, and IoT Systems for 
Smart Cities: Springer, 2017, pp. 208-217.z 

[11] M. Bohm, M. Nanni, and L. Pappalardo, "Quantifying the presence of 
air pollutants over a road network in high spatio-temporal resolution," 
in Climate Change AI, NeurIPS Workshop, 2021. 

[12] M. Nyhan et al., "Predicting vehicular emissions in high spatial 
resolution using pervasively measured transportation data and 
microscopic emissions model," Atmospheric environment, vol. 140, pp. 
352-363, 2016. 

[13] I. M. Al Jawarneh, P. Bellavista, L. Foschini, and R. Montanari, 
"Spatial-Aware Approximate Big Data Stream Processing," in 2019 
IEEE Global Communications Conference (GLOBECOM), 2019: 
IEEE, pp. 1-6. 

[14] M. Zaharia et al., "Apache spark: a unified engine for big data 
processing," Communications of the ACM, vol. 59, no. 11, pp. 56-65, 
2016. 

[15] I. M. Aljawarneh, P. Bellavista, A. Corradi, R. Montanari, L. Foschini, 
and A. Zanotti, "Efficient spark-based framework for big geospatial 
data query processing and analysis," in 2017 IEEE Symposium on 
Computers and Communications (ISCC), 2017: IEEE, pp. 851-856. 

[16] L. Gidhagen et al., "Towards climate services for European cities: 
Lessons learnt from the Copernicus project Urban SIS," Urban 
Climate, vol. 31, p. 100549, 2020. 

[17] G. Cardone, A. Corradi, L. Foschini, and R. Ianniello, "Participact: A 
large-scale crowdsensing platform," IEEE Transactions on Emerging 
Topics in Computing, vol. 4, no. 1, pp. 21-32, 2015. 

[18] A. Ojala, K. Korpela, L. Tyrväinen, P. Tiittanen, and T. Lanki, 
"Restorative effects of urban green environments and the role of urban-
nature orientedness and noise sensitivity: A field experiment," Health 
& place, vol. 55, pp. 59-70, 2019.

 


