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Abstract— The widespread adoption of ubiquitous IoT edge 
devices and modern telemetry has generated an unprecedented 
avalanche of spatially-tagged datasets, which if could interactively 
be explored, would offer relevant insights into interesting natural 
phenomena. Online application of spatial queries is expensive, a 
problem that is further inflated by the fact that we, more than 
often, do not have access to a full dataset population in non-
stationary settings. As a way of coping up, sampling stands out as 
a natural solution for approximating estimators such as averages 
and totals of some interesting correlated parameters. In any 
sampling design, representativeness remains the main issue upon 
which a method is regarded good or bad. In a loose way, in a 
spatial context, this means fairly sampling quantities in a way that 
preserves spatial characteristics so as to provide more accurate 
approximates for spatial query responses. Current big data 
management systems either do not offer over-the-counter spatial-
aware online sampling solutions or, at best, rely on randomness, 
which causes too many imponderables for an overall estimation. 
We herein have designed a QoS- spatial-aware online sampling 
method that outperforms vanilla baselines by statically significant 
magnitudes. Our method sits atop Apache Spark Structured 
Streaming’s codebase and have been tested against a benchmark 
that is consisting of millions-records of spatially-augmented 
dataset. 
Keywords— Spatial Sampling, Spark Streaming, Z-order curves, 
stratification, dimension reduction. 

I. INTRODUCTION 

The exponentially increasing adoption of Internet of Things 
(IoT) catalyzes a fast-track advancement of a breed of big data 
management ecosystems, ultimately aiming at real-time deep 
insightful exploration for guiding strategic decision making in 
all aspects of our lives, including environmental and business 
issues. Most importantly, current efforts in the relevant state-of 
-art are geared toward promoting a constellation of components 
dubbed collectively as Stream Processing Engines (SPE) [1]. 
Low-latency and high-accuracy yet remain the two largely 
antithetical requirements that are guiding the way through 
which those systems are operating, where SPEs seek trading 
them off in a way that can satisfy prescribed Service Level 
Agreements (SLAs). Side by side with that in mind, with a strict 
throughput/latency balance requirement by several emerging 
scenarios, more attention is now given to a family of online 
computations that is known as Approximate Query Processing 
(AQP). Its increasingly swift adoption is due, in large part, to 
the fact that users, more than often, are satisfied with 
approximations and are willing to trade an error-bounded 
accuracy for even a small latency gain. This in its essence, 
means the dependence on sampling, which is loosely defined as 

selecting subsets of population census, aiming at finding 
approximate answers for statistical computations. However, 
one of the main challenges is selecting a high-quality sample 
with an acceptable degree of error-bounded guarantees [2]. 
Distributions of many real-world datasets are proved to be 
uniform- and Gaussian-like, which caused early online 
sampling methods to rely on randomness. On the downside, 
random sampling produces good results only when data 
distribution is uniform but otherwise has poor quality on 
skewed geospatial datasets. In reality, data streams are mostly 
spatially-tagged, giving that they naturally originate in IoT 
devices, which mainly aim at incorporating location-awareness 
into insightful analytics. For example, an environmental study, 
through data snooping, seeks at disclosing reasons behind the 
fact that global warming is aggressively affecting specific 
regions on our earth more than others. Current SPEs mainly 
focus on balancing the throughput/latency colliding 
requirements, without considering spatial characteristics of 
arriving data streams, thus rendering their current versions 
unsuitable for geospatial scenarios. The closest works from 
relevant literature [3-5] apply various dimensionality reduction 
approaches, but however are computationally expensive and 
inapplicable in distributed online deployments. 

In this work, we have made the following contributions. We 
design online spatial-aware sampling strategies for real-time 
estimation of spatial parameters, such as totals and averages of 
spatial-oriented target variables. We specifically have designed 
a novel spatial-aware online sampling method that acts 
dynamically on top of a state-of-art micro-batch-based SPE 
representative, Specifically Spark Structured Streaming [6], 
(SpSS as a shorthand). Simply put, our method acts on 
dimensionality reduction, thus transforming the two-
dimensional into a one-dimensional space by utilizing 
specifically a space-filling curves (SFC)-based method 
(precisely, Geohashing). We divide the study area into equal-
sized polygons (currently square-shaped) and sample equal-
fraction quantities from each polygon, thus preserving spatial 
co-locality and characteristics. Our method resorts to 
stratification. Converting GPS data into geohashes offers the 
ability to capture every set of units (in one borough in city 
administrations terms, for example) under the same geohash 
value, thus demystifying the process of spatial-aware online 
sampling. Our second contribution is that we support a wide 
spectrum of well-established baseline statistical approximate 
(for spatially-rich data) queries in a streaming fashion, thus 
serving results interactively and incrementally, where estimates 
gain more accuracy as time tick forward. Those queries include 



single-value estimators (such as totals and averages) and 
aggregations (including order and rank statistics, such as Top-
N). To the best of our knowledge, we are not aware of any 
system from the relevant literature that achieves these goals. 
We first introduce the theory behind our work. We then shortly 
recapitulate the implementation of the system. In what follows, 
we present our results with proper discussions. We finalize by 
summing up the effort and recommend future research 
directions. 

II. BACKGROUND AND A BRIEF PRIMER ON SAMPLING 

A. The Importance of Sampling 

Solutions designed for exact responses are inconvenient for 
fast arriving spatial data streaming loads that are fluctuating in 
arrival rates and skewness. For example, measuring the average 
trip distance travelled by taxis from each borough in NYC, the 
United States, can never be exactly accurate, giving that we do 
not have access to a total population. Instead, data is arriving in 
streams that normally exhibits temporal density and skewness 
[7]. Luckily, in geo-statistics, such measurements can be totally 
based, with statistically significantly acceptable error-bounds, 
on approximation [8]. That said, a representative sample can be 
potentially utilized for approximating estimators such as 
averages and proportions of an interesting study target variable. 
Another reason for sampling is the fact that observing all 
interesting variables in a location could be prohibitively 
impractical, such as an abundance of migrating birds in a 
specific region, which normally exhibit uneven spatial 
distribution [9]. 
B. The Elegance of Spatial Representativeness in Online 

Sampling Designs 

Current SPEs, and their associated spatial-aware patches 
and glues, mainly focus on achieving a balance between low-
latency and high-accuracy by either provisioning extra 
computing resources (scaling in/out) or dropping-off (a.k.a. 
sampling) part of the arriving data, thus sacrificing accuracy for 
latency. The former is not favourable because it tends to under-
use resources in restrictive settings, and overflow in permissive 
settings. To achieve the latter, current SPEs employ sampling 
designs that chiefly embrace randomness, following trends 
such as those appearing in Simple Random Sampling (SRS) 
[10] , thus not accounting for spatial information taken from 
close-by locations. However, in spatial patchy distributions 
(where units are clumped into few patches), SRS does not 
interplay well in either approximating estimators or predicting 
unseen values. Simply put, it may unfairly select random 
quantities with uneven fractional rates for all autonomous 
regions of the study (those resembling strata in stratified 
sampling, explained shortly), even if it hits the absolute center 
of the target at times, at some other time it will not, or even 
much at all. Also, it is commonly agreed among statisticians 
that spatial data maintains spatial trends which affect the 
observed responses, which stems from the fact that spatially-
collocated units are normally affected by the same set of 
surrounding environmental, ecological or locational factors, 
such as those related to anthropogony  [4, 5, 9]. Having said 

that, it naturally implies that selecting spatially well-spread-out 
samples positively affects the accuracy of estimators. We refer 
to such kinds of samples as spatially representative samples. 
Further, despite the scarce abundance of some statistical spatial 
sampling methods, they mostly do not consider continuous 
populations, perhaps most importantly attributed to the fact that 
system’s computational capacity of the time was prohibitive. 
Nowadays, with advancements in SPEs, specifically those 
based upon MapReduce (MR) frameworks [11] , it is possible 
to apply such statistics online. 

III. SPATIAL AWARE APPROXIMATE DATA STREAM 

PROCESSING SYSTEM OVERVIEW 

A. Usage Model and Baseline System 

Visualization by map rendering systems provides an 
insightful look at spatial data. However, those systems are 
typically space-limited and only capable of observing a fraction 
of arriving data streams. Consider an interactive continuous 
query (CQ) that asks to “generate a real-time heatmap showing 
people and objects, such as NYC taxicabs, in-move”. Plotting 
all arriving spatial objects easily cause a clutter. Sampling thus 
is a natural solution. A baseline that is based on simple random 
probability sampling (such as the SpSS-based SRS baseline) 
tends to overlook regions, generating heatmaps that do not 
necessarily reflect reality. On the contrary, a sampling design 
that selects a well-representative spatial sample is favourable as 
it preserves spatial density in all regions, avoids selection 
unfairness, and generates more realistic maps. This represents 
one usage model of our SAOS sampling design (described 
shortly). 

B. Design Premises 

We have designed SpatialSPE (short for spatial stream 
processing engine) so that it operates with the following 
premises and presumptions, which we consider as future 
perspectives. There is a cost module acting as a controller that 
maps SLAs requirements (the contradicting response’s accuracy 
level and latency requirements) into an adaptive sampling 
fraction. We leave the consideration of peculiarities of such a 
controller to a future work. Also, we currently consider equal-
sized square polygons represented by corresponding geohashes. 
We consider other possibilities (such as variable-sized random 
shaped polygonal areas) in a future work. 

C. SpatialSPE 

We have designed a spatial aware approximate data stream 
processing system (we dub SpatialSPE hereafter for short) for 
online big geospatial data stream processing approximate 
analytics. The context diagram in Fig. 1 depicts a high-level 
architecture of SpatialSPE’s workflow, which acts as an integral 

 
Fig. 1. SpatialSPE workflow 



component of the overview tier in the system’s usage model. 
Data is coming from heterogeneous sources (spatially-tagged), 
to be then served as an unbounded input table (in SpSS parlance) 
at regular basis (batch intervals, a.k.a. trigger intervals in SpSS 
jargon). As data hits this stage, SpatialSPE starts its  unbounded 
operation. At a front-stage resides our spatial-aware stratified-
based sampling method (described shortly) as a pivotal module 
in our design.  
We currently assume that latency/throughput targets are served 
to the system externally by the user. Based on those figures, we 
sample specific fractions of the input arriving data tuples, 
thereby producing an output that has rigorous error bounds and 
serve it to the user interactively. For now, sampling fractions are 
the same for all constituent stratum (geohashes in our setting). 
In addition, we receive a CQ that will be incrementalized 
through our system. Particularly, SpatialSPE utilizes our spatial-
aware sampling method (discussed shortly)  for selecting a 
spatial-aware sample from the input stream that is proportionate 
to the latency/throughput targets. 

An indispensable module of our design is a procedure that is 
calculating a list of geocodes (currently geohashes) covering a 
study area where data samples are collected. It basically receives 
a list of vertices that collectively form polygonal areas (known 
as neighborhoods, districts or boroughs in city management 
terms), thereafter our procedure explodes all geohashes that are 
covering all polygons , constructing a map that is then served to 
our sampling method . What remains incumbent then is applying 
our spatial-aware online sampling procedure. Our system then 
applies a user-defined CQ on the sample during that window 
interval and serves the result interactively to user. Results are 
incrementalized, meaning that they are served gradually to user, 
reflecting every change after each time window. Algorithm 1 
shows the workflow of SpatialSPE. 

D. Spatial Aware Online Sampling (SAOS) Algorithm 

To simplify the spatial approximate real-time data 
processing, we have designed a novel method that we term as 
Spatial-Aware Online Sampling (SAOS), which then constitutes 
the main technological block of our SpatialSPE system. Our 
algorithm is efficient in the sense that it preserves spatial 
representativeness in addition to its streamlined injection within 
the layers of state-of-art micro-batch stream processing models 
such as SpSS. Having said that, it does not require a pre-
knowledge of the streaming statistics, such as a total data 
population (that may arrive during a long lifespan), it otherwise 
depends on incrementalization offered by the underlying engine 
and builds on top of that. 

The essence of our SAOS method is coded in the 
pseudocode  of Algorithm 2. The workflow proceeds as follows: 
For each batch interval during a time window, we first compute 
a geohash corresponding to a geometric coordinates of an 
arriving tuple, then we use the resulting geohash in fetching a 
corresponding sampling fraction, and thereafter we use that to 
draw a random sample from each stratum independently, where 
each tuple within that stratum (geohash) receives an equal 
selection (aliased inclusion) probability. To take a utilitarian 
perspective, SAOS algorithm is analogous to the following  
heuristic overview. Imagining the earth flattened out, the 
process starts by placing a square grid over the study region, and 
then proceeds by randomly selecting a spatially-proportional 
fair number of tuples from each grid cell. Each grid cell 
represents a geohash in our setting. By doing so, we resort to 
stratified sampling, which is favorable over other designs in that 
it renders better statistical estimates for target variables of 
spatially-rich settings. We offer a fine-tuning capability through 
the control of geohash precision parameter at which the user can 
tune at different levels. This is visualized as follows; imagine 
that the grid starts initially as (2 x 2), where each geohash covers 
a cell, then changing the precision of geohash (number of bits 
on the orders of five, i.e. 30 bits geohash is equal to a string/digit 
combination of size six, five each) offers the ability to make the 
cells granular or coarser depending on needs. This process 
reduces a geographical two-dimensional space into one-
dimensional space while preserving spatial locality and 
characteristics. We posit that the hybridization between z-order 
curves (from which geohash is a special case) and  simple 
probability sampling (random in this setting, within the 
boundaries of each grid cell) yields a spatially well-
representative sample, that, in turns, yields better estimator 
values for  population target variables. 

 

Algorithm 1: SpatialSPE Workflow 
/* latThrTargets: latency throughput targets, geoPrec: geohash 
precision */ 
Input: stream, ContinuousQuery (CQ), latThrTargets, polygons, 
geoPrec, seed 
samplingMap  ∅ //map of geohash keys and sampling fractions  
coverGeo  getCoverGeo (polygons, geoPrec) /* List of 
geohashes covering study area */ 
//cost model computes the sampling fraction 
sampFraction   costProcedure(latThrTargets) 
Foreach geohash in coverGeo do 
    // construct a map, geohash: key, sampling fraction: value 
    element  map {geohash sampFraction} 
    samplingMap.put(element) 
End 
Foreach time window interval do 
    windowSample = ∅   // tuples sampled in current time window 
    Foreach batchInterval in window interval do 
           batchSample =  ∅  //tuples sampled in current batch interval 
           forall tuplesi in batch interval do  
             /* apply SAOS on tuples of current batch interval: tuplesi */ 
                       batchSample   SAOS (tuplesi, samplingMap,  
sampFraction, seed) 
                       windowSample.add(batchSample) 
           End 
   End 
        //Compute and serve incremental output every time window 
 incrementalOutput   run (CQ, windowSample) 
 return incrementalOutput with error bounds 
End 

Algorithm 2: Spatial-Aware Online Sampling (SAOS) 
SAOS (tuplesi, samplingMap,  sampFraction, seed) 
r = random(seed), S  ∅ 
Foreach tuple in micro-batch-tuples do 
    geohash   geocode (tuple) 
    //get sampling fraction for this geohash key = fractioni, or zero 
    fractioni   samplingMap.getOrElse(geohash,0.0) 
    //toss a coin selecting items from each geohash in current batch 
    If (P (r < fractioni)) S.put(tuple) 
    End 
return S 



E. Supported Queries 

We currently support two basic groups of spatial queries, 
from which other complex queries (such as spatial clustering 
[12]  and kernel density estimator (KDE) [13] ) are seamlessly 
composable. 
Group1 (G1). Single queries (a.k.a. linear). An example 
includes “finding an estimate of a population average for a target 
variable by only using a spatial sample”. Since our method 
recovers stratified sampling in its core, then the theory of 
stratified sampling applies  [10] , and hence, such an estimation 
problem is better formulated as follows: say we have in total K 
geohashes (each geohash is a stratum), ykj  represents a value of 
a jth tuple in geohash k. 𝑡 (pronounced tau) is the population total 
of stratum k. Then the population total of the target variable y  
can be estimated using our method by applying  
t̂SAOS= ∑ tk

K
k=1 = ∑ Nkyതk

K
k=1 . The average is thus estimated using 

SAOS by applying YഥSAOS= t ̂SAOS/N = ∑ (Ni/N)yതi
I
i=1  . Since 

SpSS does not provide over-the-shelf solutions for such 
estimators, we have incorporated a patch for accomplishing that.  
Group2 (G2).  Stateful aggregation queries (a.k.a. 
ensembles). We specifically focus on Top-N ensembles, where 
we first apply SAOS to the arriving tuples, then we group 
arriving tuples by geohash (or neighborhood, borough, districts 
etc., at a coarser level) keys, and thereafter count the number of 
tuples in each geohash incrementally and order the resulting list 
in descending fashion. An example query in this category : 
“where do people tend to order taxi pickups in NY City in US”. 

F. Quantifying Uncertainty 

Estimators through sampling are naturally bounded to a 
degree of uncertainty and quantifying that is essential.  
I) For single queries, As our method resorts to stratified 
sampling, we  rely on the Theory of Stratified Sampling [10] for 
estimating the accuracy of G1 queries approximations obtained 
through SAOS. We first use 
vො(t ̂SAOS) = ∑ (1– (nk/Nk)K

k=1 ) Nk
2(sK

2 /nk)  to calculate the 
estimated variance of the estimated total. Then we carry that 
over to estimate the variance of the estimated average using 
vො(YഥSAOS) = vො(t ̂SAOS)/N2. Then, we calculate the standard error 

(SE) depending on SE(YഥSAOS) = ඥvො(YഥSAOS) . Then we depend 
on YഥSAOS ∓ zα/2SE(YഥSAOS)  to approximate 100(1- α)% 
confidence interval (CI) for the population mean Yഥpop, where 
zα/2 is the upper 𝛼/2 point of the normal distribution. Then we 
define RE = zα/2(SE(YഥSAOS)/YഥSAOS)   to calculate a relative 
error (RE). We also define the accuracy loss as 
accLoss = |estimatedMean – trueMean| / trueMean. In addition 
to those, we calculate the gain of applying SAOS (instead of the 
baseline), for which we define  
gainSAOS  =vො(YഥSAOS) /vො(YഥSRS) , where vො(YഥSAOS) is  estimated 
variance from applying SAOS, whereas vො(YഥSRS)  is the 
estimated variance from applying SpSS based SRS. 
II) For stateful aggregations (specifically Top-N) queries. We 
aim at measuring each method’s ability in preserving the 

 
1 The source code of SpatialSPE (including SAOS) is 

available at: https://github.com/IsamAljawarneh/SpatialSPE 

aggregation’s original ranking. For this, we rely on Spearman's 
rank correlation coefficient [14] (abbreviated Spearman's rho 
hereafter). We have adopted this with a tiny retrofitting.  
Spearman's rho  is a measure for statistical dependency between 
the ranking of two variables in a dataset. In brevity, our 
application proceeds as follows: we accumulate the ranks, and 
once the CQ stop (intentionally by user) we take the 
accumulated ranking of the original aggregations (w/o 
sampling) and the one calculated through SAOS (and 
comparatively speaking, through SpSS-based SRS baseline). 
and we serve to Spearman’s rho, and thereby we apply 
ρrg= cov(ranknos, ranksamp) / (σranknos

 . σranksamp
) , where 

ρrg (pronounced rho) is spearman’s correlation coefficient 

applied for ranking statistics , cov(ranknos, ranksamp)  is the 
covariance of the rank variables, σ௥௔௡k೙೚ೞ

 and σ௥௔௡௞ೞೌ೘೛
 are the 

standard deviations of the rank variables, w/o and with 
sampling, respectively. 

IV. SPATIALSPE REALIZATION 

To show the excellence of SpatialSPE 1 , we have built a 
standard-compliant prototype on top of SpSS, following the 
trending layered-up software stack. Since, as of this writing,  
SRS is not currently implemented for SpSS, and for a fair 
comparison, we have implemented a version of SRS that is able 
to operate in streaming settings and injected it as a glue to the 
SpSS for approximate estimations depending on SRS (we refer 
to this as SpSS-based SRS hereafter for short). This was only 
possible because we rely on the micro-batching mode of 
streaming operation, where streaming tuples are accumulated in 
blocks before being dispatched for processing in a Spark 
underlying job. Thus, by implanting a frontstage after the 
formation of a block and just before partitioning, an SRS can 
work as if it was operating in a batch mode (the essence of 
micro-batch stream processing).  

V. PERFORMANCE EVALUATION AND RESULTS 

A. Deployment Settings and Benchmarking 

Dataset. For benchmarking, we use the NY City taxicab trips 
datasets 2, from which we choose a cohort of six months dataset 
(around nine million units) representing data captured through 
taxi rides for the first half of 2016. We choose the green taxi 
trip records, which include interesting fields capturing, most 
importantly, pick-up/drop-off locations and trip distances. 

Deployment and experimental settings. We run our system, 
SpatialSPE,  on a Microsoft Azure HDInsight Cluster hosting 
Apache Spark version 2.2.1. It consists of  6 NODES (2 Head + 
4 Worker) with 24 cores. Head (2 x D12 v2) nodes , and Worker 
(4 x D13 v2) nodes. Each head node operates on 4 cores with 28 
GB RAM and 200 GB Local SSD memory, and quantities are 
double those figures for worker nodes. 

Throughput. We simply define throughput as the count of 
processed rows per second. For calculating the throughput for 
all systems, including the SpSS-based  retrofitted SRS sampling 

2 https://www1.nyc.gov  



method that we have designed and our SAOS method, we utilize 
the StreamingQueryListener (from SpSS) to capture  start and 
end timestamps and  number of processed tuples, then we simply 
divide the latter by the total time elapsed during a  CQ streaming 
session. Throughput is an interesting measurement because it 
captures the adaptability of system against fluctuating arrival 
rates of oscillating data streams. 

B. Results 

We report results we have obtained by measuring the metrics 
mentioned in § II. We depend on varying four parameters. Those 
are sampling fraction, arrival rate, geohash precision and 
computing power. As we have two categories of queries (refer 
to § II), we measure variations of metrics for each as follows. 
Query G1 (linear). We have measured the performance based 
on the following linear query: “find the average trip distance of 
a NYC taxicab itinerary trip during the first six months of the 
year 2016”. Query G2 (Top-N). We use the following query to 
measure the performance of ensembles: “group NYC taxi trips 
count by specific region (region could be geohash at a granular 
level and neighbourhood at a coarser level, e.g. zoom-out) with 
descending order”. We have applied the following combinations 
of parameter settings; each parameter setting’s group is 
specialized in measuring a base category. In parameter setting 1, 
we focus on accuracy for both query groups, whereas in the 
parameter setting 2, we focus more on throughput. 

Parameter settings 1. Varying geohash precision and 
sampling fraction. We vary geohash precisions from 30 to 35, 
and the sampling fraction from 20% to 80% (with a scale slide 

of 20% each).  For this combination specifically, we aim at 
measuring the accuracy of both query groups G1 and G2. 
The combinational graph in Fig. 2 shows the comparison 
between SAOS and SpSS-based SRS methods in the language 
of accuracy for the estimator of query in G1. 
We notice from Fig. 2 that SAOS outperforms SpSS-based SRS 
for all geohash precision settings (30 and 35), for both measures, 
accuracy loss and relative error. Comparing SAOS to itself with 
differing geohash precision, generally speaking, we note that 
SAOS have bigger accuracy loss for geohash precision 35 
(loss_SAOS 35 in Fig. 2), compared to SAOS accuracy loss at 
geohash precision 30 (loss_SAOS 30 in Fig. 2). This is 
attributed to that a wider geohash means smaller polygons, 
hence smaller number of keys per stratum and less precise 
stratification per batch interval that carries over a negative effect 
to the estimators and, consequently reduces the accuracy. Fig. 3 
shows that under SAOS , for 95% of the possible samples of all 
fractions (20% to 80% from the total population size) the 
corresponding confidence intervals cover the true value of the 
population mean (a.k.a. average), whereas as shown in Fig. 4, 
SRS confidence intervals are susceptible to missing the true 
value, look at the case of sampling fraction 40%, where the 
average true value does not fall within the corresponding 
confidence interval and is also marginal on fraction 60%. The 
same trend occurs for the 68 CI (though not shown here for the 
lack of space). To better understand how SAOS is adept more 
than SRS in geo-statistics, we show in Fig. 5 the gain obtained 
by applying our method to G1 queries (calculated by applying 
gainSAOS , refer to § III). Fig. 6 shows a comparison between our 
method SAOS and baselines in terms of accuracy for G2 
queries.  Ranking precision of SAOS outperforms those for SRS 

 
Fig. 2. Estimation accuracy of SAOS vs. SpSS-based SRS, for G1 queries 

 

 
Fig. 3. confidence interval 95% of SAOS on average estimator. 

 
Fig. 4. confidence interval 95% of SpSS- based SRS on average estimator. 

 
Fig. 5. Gain by applying SAOS instead of and SpSS-based SRS method 



(though almost at par with SRS for fractions 40% and 80% with 
geohash precision 30).  

Parameter settings 2.  Fixing geohash precision at 30, and 
varying arrival rate from 1000K to 2000K tuples/second and 
sampling fractions between 20% to 80% (20% each step), 
including also 1% and 5% to account for strict latency targets. 
The number of tuples in each window increases proportionally. 
By this parameter setting, we measure the throughput and 
latency of Query group 2 (G2), as it is the one that is consisting 
of costly stateful aggregations. Throughput is calculated as the 
median (i.e., 50th percentile) of ten runs. Fig. 7 shows that SAOS 
slightly outperforms SpSS-based SRS. As shown in the 
secondary axis to the right of the figure, we rationale this to the 
fact that, on average, SpSS-based SRS needs to manage more 
geohash key states (for stateful aggregations, trans-trigger 
boundaries) than those keys that need to be managed by SAOS. 
Both, SpSS-based SRS and SAOS show similar trends for 
arrival rate of 2000K tuples/second with SpSS-based SRS 
slightly underperforming, though not shown here for the lack of 
space. 

VI. SUMMARY AND FUTURE RESEARCH FRONTIERS 

In this work, we have designed a novel system that targets 
spatial approximate processing in fast arriving data streaming 
and dynamic scenarios, such as smart cities and urban 
computing [15] . We specifically focus on Spark Structured 
Streaming (SpSS) as the first in its category which introduces a 
fully declarative API for interactive stream processing [6]. 
However, Spark in its native version does not offer off-the-shelf 
solutions for spatial approximate query processing(SAQP), such 
as spatial sampling. Aiming at closing this void, we have 
designed SpatialSPE and incorporated it within the layers of 
SpSS, which then ensures its interoperability with the Spark 
ecosystem (specifically in SQL mode), taking full advantage of 
the underlying optimizations provided by Spark SQL, while 
operating in a more specialized mode (geospatial) and ensuring, 
at the same time, that query plans are optimal. To address the 
design premises presumed in § II, we are currently working on 
designing a controller that first predicts the fluctuation in the 
data arrival rate and skewness, thereby utilizes those in 
calculating a proportionate sampling fraction, which ensures 
preventing the congestion of operators comprising the DAG 
graph of the stream processing pipeline, thus meeting the 
latency/throughput targets prescribed by the user through SLAs. 
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Fig. 6. rho by applying SAOS against SpSS SRS-based method 

 
Fig. 7. Throughput comparison SAOS against SpSS-based SRS 


