
Spatial-Aware Approximate Big Data Stream
Processing

Isam Mashhour Al Jawarneh, Paolo Bellavista , Luca Foschini , Rebecca Montanari

Dipartimento di Informatica – Scienza e Ingegneria, University of Bologna
Viale Risorgimento 2, 40136 Bologna, Italy

{isam.aljawarneh3, paolo.bellavista, luca.foschini, rebecca.montanari}@unibo.it

Abstract— The widespread adoption of ubiquitous IoT edge
devices and modern telemetry has generated an unprecedented
avalanche of spatially-tagged datasets, which if could interactively
be explored, would offer relevant insights into interesting natural
phenomena. Online application of spatial queries is expensive, a
problem that is further inflated by the fact that we, more than
often, do not have access to a full dataset population in non-
stationary settings. As a way of coping up, sampling stands out as
a natural solution for approximating estimators such as averages
and totals of some interesting correlated parameters. In any
sampling design, representativeness remains the main issue upon
which a method is regarded good or bad. In a loose way, in a
spatial context, this means fairly sampling quantities in a way that
preserves spatial characteristics so as to provide more accurate
approximates for spatial query responses. Current big data
management systems either do not offer over-the-counter spatial-
aware online sampling solutions or, at best, rely on randomness,
which causes too many imponderables for an overall estimation.
We herein have designed a QoS- spatial-aware online sampling
method that outperforms vanilla baselines by statically significant
magnitudes. Our method sits atop Apache Spark Structured
Streaming’s codebase and have been tested against a benchmark
that is consisting of millions-records of spatially-augmented
dataset.
Keywords— Spatial Sampling, Spark Streaming, Z-order curves,
stratification, dimension reduction.

I. INTRODUCTION

The exponentially increasing adoption of Internet of Things
(IoT) catalyzes a fast-track advancement of a breed of big data
management ecosystems, ultimately aiming at real-time deep
insightful exploration for guiding strategic decision making in
all aspects of our lives, including environmental and business
issues. Most importantly, current efforts in the relevant state-of
-art are geared toward promoting a constellation of components
dubbed collectively as Stream Processing Engines (SPE) [1].
Low-latency and high-accuracy yet remain the two largely
antithetical requirements that are guiding the way through
which those systems are operating, where SPEs seek trading
them off in a way that can satisfy prescribed Service Level
Agreements (SLAs). Side by side with that in mind, with a strict
throughput/latency balance requirement by several emerging
scenarios, more attention is now given to a family of online
computations that is known as Approximate Query Processing
(AQP). Its increasingly swift adoption is due, in large part, to
the fact that users, more than often, are satisfied with
approximations and are willing to trade an error-bounded
accuracy for even a small latency gain. This in its essence,
means the dependence on sampling, which is loosely defined as

selecting subsets of population census, aiming at finding
approximate answers for statistical computations. However,
one of the main challenges is selecting a high-quality sample
with an acceptable degree of error-bounded guarantees [2].
Distributions of many real-world datasets are proved to be
uniform- and Gaussian-like, which caused early online
sampling methods to rely on randomness. On the downside,
random sampling produces good results only when data
distribution is uniform but otherwise has poor quality on
skewed geospatial datasets. In reality, data streams are mostly
spatially-tagged, giving that they naturally originate in IoT
devices, which mainly aim at incorporating location-awareness
into insightful analytics. For example, an environmental study,
through data snooping, seeks at disclosing reasons behind the
fact that global warming is aggressively affecting specific
regions on our earth more than others. Current SPEs mainly
focus on balancing the throughput/latency colliding
requirements, without considering spatial characteristics of
arriving data streams, thus rendering their current versions
unsuitable for geospatial scenarios. The closest works from
relevant literature [3-5] apply various dimensionality reduction
approaches, but however are computationally expensive and
inapplicable in distributed online deployments.

In this work, we have made the following contributions. We
design online spatial-aware sampling strategies for real-time
estimation of spatial parameters, such as totals and averages of
spatial-oriented target variables. We specifically have designed
a novel spatial-aware online sampling method that acts
dynamically on top of a state-of-art micro-batch-based SPE
representative, Specifically Spark Structured Streaming [6],
(SpSS as a shorthand). Simply put, our method acts on
dimensionality reduction, thus transforming the two-
dimensional into a one-dimensional space by utilizing
specifically a space-filling curves (SFC)-based method
(precisely, Geohashing). We divide the study area into equal-
sized polygons (currently square-shaped) and sample equal-
fraction quantities from each polygon, thus preserving spatial
co-locality and characteristics. Our method resorts to
stratification. Converting GPS data into geohashes offers the
ability to capture every set of units (in one borough in city
administrations terms, for example) under the same geohash
value, thus demystifying the process of spatial-aware online
sampling. Our second contribution is that we support a wide
spectrum of well-established baseline statistical approximate
(for spatially-rich data) queries in a streaming fashion, thus
serving results interactively and incrementally, where estimates
gain more accuracy as time tick forward. Those queries include

single-value estimators (such as totals and averages) and
aggregations (including order and rank statistics, such as Top-
N). To the best of our knowledge, we are not aware of any
system from the relevant literature that achieves these goals.
We first introduce the theory behind our work. We then shortly
recapitulate the implementation of the system. In what follows,
we present our results with proper discussions. We finalize by
summing up the effort and recommend future research
directions.

II. BACKGROUND AND A BRIEF PRIMER ON SAMPLING

A. The Importance of Sampling

Solutions designed for exact responses are inconvenient for
fast arriving spatial data streaming loads that are fluctuating in
arrival rates and skewness. For example, measuring the average
trip distance travelled by taxis from each borough in NYC, the
United States, can never be exactly accurate, giving that we do
not have access to a total population. Instead, data is arriving in
streams that normally exhibits temporal density and skewness
[7]. Luckily, in geo-statistics, such measurements can be totally
based, with statistically significantly acceptable error-bounds,
on approximation [8]. That said, a representative sample can be
potentially utilized for approximating estimators such as
averages and proportions of an interesting study target variable.
Another reason for sampling is the fact that observing all
interesting variables in a location could be prohibitively
impractical, such as an abundance of migrating birds in a
specific region, which normally exhibit uneven spatial
distribution [9].
B. The Elegance of Spatial Representativeness in Online

Sampling Designs

Current SPEs, and their associated spatial-aware patches
and glues, mainly focus on achieving a balance between low-
latency and high-accuracy by either provisioning extra
computing resources (scaling in/out) or dropping-off (a.k.a.
sampling) part of the arriving data, thus sacrificing accuracy for
latency. The former is not favourable because it tends to under-
use resources in restrictive settings, and overflow in permissive
settings. To achieve the latter, current SPEs employ sampling
designs that chiefly embrace randomness, following trends
such as those appearing in Simple Random Sampling (SRS)
[10] , thus not accounting for spatial information taken from
close-by locations. However, in spatial patchy distributions
(where units are clumped into few patches), SRS does not
interplay well in either approximating estimators or predicting
unseen values. Simply put, it may unfairly select random
quantities with uneven fractional rates for all autonomous
regions of the study (those resembling strata in stratified
sampling, explained shortly), even if it hits the absolute center
of the target at times, at some other time it will not, or even
much at all. Also, it is commonly agreed among statisticians
that spatial data maintains spatial trends which affect the
observed responses, which stems from the fact that spatially-
collocated units are normally affected by the same set of
surrounding environmental, ecological or locational factors,
such as those related to anthropogony [4, 5, 9]. Having said

that, it naturally implies that selecting spatially well-spread-out
samples positively affects the accuracy of estimators. We refer
to such kinds of samples as spatially representative samples.
Further, despite the scarce abundance of some statistical spatial
sampling methods, they mostly do not consider continuous
populations, perhaps most importantly attributed to the fact that
system’s computational capacity of the time was prohibitive.
Nowadays, with advancements in SPEs, specifically those
based upon MapReduce (MR) frameworks [11] , it is possible
to apply such statistics online.

III. SPATIAL AWARE APPROXIMATE DATA STREAM

PROCESSING SYSTEM OVERVIEW

A. Usage Model and Baseline System

Visualization by map rendering systems provides an
insightful look at spatial data. However, those systems are
typically space-limited and only capable of observing a fraction
of arriving data streams. Consider an interactive continuous
query (CQ) that asks to “generate a real-time heatmap showing
people and objects, such as NYC taxicabs, in-move”. Plotting
all arriving spatial objects easily cause a clutter. Sampling thus
is a natural solution. A baseline that is based on simple random
probability sampling (such as the SpSS-based SRS baseline)
tends to overlook regions, generating heatmaps that do not
necessarily reflect reality. On the contrary, a sampling design
that selects a well-representative spatial sample is favourable as
it preserves spatial density in all regions, avoids selection
unfairness, and generates more realistic maps. This represents
one usage model of our SAOS sampling design (described
shortly).

B. Design Premises

We have designed SpatialSPE (short for spatial stream
processing engine) so that it operates with the following
premises and presumptions, which we consider as future
perspectives. There is a cost module acting as a controller that
maps SLAs requirements (the contradicting response’s accuracy
level and latency requirements) into an adaptive sampling
fraction. We leave the consideration of peculiarities of such a
controller to a future work. Also, we currently consider equal-
sized square polygons represented by corresponding geohashes.
We consider other possibilities (such as variable-sized random
shaped polygonal areas) in a future work.

C. SpatialSPE

We have designed a spatial aware approximate data stream
processing system (we dub SpatialSPE hereafter for short) for
online big geospatial data stream processing approximate
analytics. The context diagram in Fig. 1 depicts a high-level
architecture of SpatialSPE’s workflow, which acts as an integral

Fig. 1. SpatialSPE workflow

component of the overview tier in the system’s usage model.
Data is coming from heterogeneous sources (spatially-tagged),
to be then served as an unbounded input table (in SpSS parlance)
at regular basis (batch intervals, a.k.a. trigger intervals in SpSS
jargon). As data hits this stage, SpatialSPE starts its unbounded
operation. At a front-stage resides our spatial-aware stratified-
based sampling method (described shortly) as a pivotal module
in our design.
We currently assume that latency/throughput targets are served
to the system externally by the user. Based on those figures, we
sample specific fractions of the input arriving data tuples,
thereby producing an output that has rigorous error bounds and
serve it to the user interactively. For now, sampling fractions are
the same for all constituent stratum (geohashes in our setting).
In addition, we receive a CQ that will be incrementalized
through our system. Particularly, SpatialSPE utilizes our spatial-
aware sampling method (discussed shortly) for selecting a
spatial-aware sample from the input stream that is proportionate
to the latency/throughput targets.

An indispensable module of our design is a procedure that is
calculating a list of geocodes (currently geohashes) covering a
study area where data samples are collected. It basically receives
a list of vertices that collectively form polygonal areas (known
as neighborhoods, districts or boroughs in city management
terms), thereafter our procedure explodes all geohashes that are
covering all polygons , constructing a map that is then served to
our sampling method . What remains incumbent then is applying
our spatial-aware online sampling procedure. Our system then
applies a user-defined CQ on the sample during that window
interval and serves the result interactively to user. Results are
incrementalized, meaning that they are served gradually to user,
reflecting every change after each time window. Algorithm 1
shows the workflow of SpatialSPE.

D. Spatial Aware Online Sampling (SAOS) Algorithm

To simplify the spatial approximate real-time data
processing, we have designed a novel method that we term as
Spatial-Aware Online Sampling (SAOS), which then constitutes
the main technological block of our SpatialSPE system. Our
algorithm is efficient in the sense that it preserves spatial
representativeness in addition to its streamlined injection within
the layers of state-of-art micro-batch stream processing models
such as SpSS. Having said that, it does not require a pre-
knowledge of the streaming statistics, such as a total data
population (that may arrive during a long lifespan), it otherwise
depends on incrementalization offered by the underlying engine
and builds on top of that.

The essence of our SAOS method is coded in the
pseudocode of Algorithm 2. The workflow proceeds as follows:
For each batch interval during a time window, we first compute
a geohash corresponding to a geometric coordinates of an
arriving tuple, then we use the resulting geohash in fetching a
corresponding sampling fraction, and thereafter we use that to
draw a random sample from each stratum independently, where
each tuple within that stratum (geohash) receives an equal
selection (aliased inclusion) probability. To take a utilitarian
perspective, SAOS algorithm is analogous to the following
heuristic overview. Imagining the earth flattened out, the
process starts by placing a square grid over the study region, and
then proceeds by randomly selecting a spatially-proportional
fair number of tuples from each grid cell. Each grid cell
represents a geohash in our setting. By doing so, we resort to
stratified sampling, which is favorable over other designs in that
it renders better statistical estimates for target variables of
spatially-rich settings. We offer a fine-tuning capability through
the control of geohash precision parameter at which the user can
tune at different levels. This is visualized as follows; imagine
that the grid starts initially as (2 x 2), where each geohash covers
a cell, then changing the precision of geohash (number of bits
on the orders of five, i.e. 30 bits geohash is equal to a string/digit
combination of size six, five each) offers the ability to make the
cells granular or coarser depending on needs. This process
reduces a geographical two-dimensional space into one-
dimensional space while preserving spatial locality and
characteristics. We posit that the hybridization between z-order
curves (from which geohash is a special case) and simple
probability sampling (random in this setting, within the
boundaries of each grid cell) yields a spatially well-
representative sample, that, in turns, yields better estimator
values for population target variables.

Algorithm 1: SpatialSPE Workflow
/* latThrTargets: latency throughput targets, geoPrec: geohash
precision */
Input: stream, ContinuousQuery (CQ), latThrTargets, polygons,
geoPrec, seed
samplingMap  ∅ //map of geohash keys and sampling fractions
coverGeo  getCoverGeo (polygons, geoPrec) /* List of
geohashes covering study area */
//cost model computes the sampling fraction
sampFraction  costProcedure(latThrTargets)
Foreach geohash in coverGeo do
 // construct a map, geohash: key, sampling fraction: value
 element  map {geohash sampFraction}
 samplingMap.put(element)
End
Foreach time window interval do
 windowSample = ∅ // tuples sampled in current time window
 Foreach batchInterval in window interval do
 batchSample = ∅ //tuples sampled in current batch interval
 forall tuplesi in batch interval do
 /* apply SAOS on tuples of current batch interval: tuplesi */
 batchSample  SAOS (tuplesi, samplingMap,
sampFraction, seed)
 windowSample.add(batchSample)
 End
 End
 //Compute and serve incremental output every time window
 incrementalOutput  run (CQ, windowSample)
 return incrementalOutput with error bounds
End

Algorithm 2: Spatial-Aware Online Sampling (SAOS)
SAOS (tuplesi, samplingMap, sampFraction, seed)
r = random(seed), S  ∅
Foreach tuple in micro-batch-tuples do
 geohash  geocode (tuple)
 //get sampling fraction for this geohash key = fractioni, or zero
 fractioni  samplingMap.getOrElse(geohash,0.0)
 //toss a coin selecting items from each geohash in current batch
 If (P (r < fractioni)) S.put(tuple)
 End
return S

E. Supported Queries

We currently support two basic groups of spatial queries,
from which other complex queries (such as spatial clustering
[12] and kernel density estimator (KDE) [13]) are seamlessly
composable.
Group1 (G1). Single queries (a.k.a. linear). An example
includes “finding an estimate of a population average for a target
variable by only using a spatial sample”. Since our method
recovers stratified sampling in its core, then the theory of
stratified sampling applies [10] , and hence, such an estimation
problem is better formulated as follows: say we have in total K
geohashes (each geohash is a stratum), ykj represents a value of
a jth tuple in geohash k. 𝑡 (pronounced tau) is the population total
of stratum k. Then the population total of the target variable y
can be estimated using our method by applying
t̂SAOS= ∑ tk

K
k=1 = ∑ Nkyതk

K
k=1 . The average is thus estimated using

SAOS by applying YഥSAOS= t ̂SAOS/N = ∑ (Ni/N)yതi
I
i=1 . Since

SpSS does not provide over-the-shelf solutions for such
estimators, we have incorporated a patch for accomplishing that.
Group2 (G2). Stateful aggregation queries (a.k.a.
ensembles). We specifically focus on Top-N ensembles, where
we first apply SAOS to the arriving tuples, then we group
arriving tuples by geohash (or neighborhood, borough, districts
etc., at a coarser level) keys, and thereafter count the number of
tuples in each geohash incrementally and order the resulting list
in descending fashion. An example query in this category :
“where do people tend to order taxi pickups in NY City in US”.

F. Quantifying Uncertainty

Estimators through sampling are naturally bounded to a
degree of uncertainty and quantifying that is essential.
I) For single queries, As our method resorts to stratified
sampling, we rely on the Theory of Stratified Sampling [10] for
estimating the accuracy of G1 queries approximations obtained
through SAOS. We first use
vො(t ̂SAOS) = ∑ (1– (nk/Nk)K

k=1) Nk
2(sK

2 /nk) to calculate the
estimated variance of the estimated total. Then we carry that
over to estimate the variance of the estimated average using
vො(YഥSAOS) = vො(t ̂SAOS)/N2. Then, we calculate the standard error

(SE) depending on SE(YഥSAOS) = ඥvො(YഥSAOS) . Then we depend
on YഥSAOS ∓ zα/2SE(YഥSAOS) to approximate 100(1- α)%
confidence interval (CI) for the population mean Yഥpop, where
zα/2 is the upper 𝛼/2 point of the normal distribution. Then we
define RE = zα/2(SE(YഥSAOS)/YഥSAOS) to calculate a relative
error (RE). We also define the accuracy loss as
accLoss = |estimatedMean – trueMean| / trueMean. In addition
to those, we calculate the gain of applying SAOS (instead of the
baseline), for which we define
gainSAOS =vො(YഥSAOS) /vො(YഥSRS) , where vො(YഥSAOS) is estimated
variance from applying SAOS, whereas vො(YഥSRS) is the
estimated variance from applying SpSS based SRS.
II) For stateful aggregations (specifically Top-N) queries. We
aim at measuring each method’s ability in preserving the

1 The source code of SpatialSPE (including SAOS) is

available at: https://github.com/IsamAljawarneh/SpatialSPE

aggregation’s original ranking. For this, we rely on Spearman's
rank correlation coefficient [14] (abbreviated Spearman's rho
hereafter). We have adopted this with a tiny retrofitting.
Spearman's rho is a measure for statistical dependency between
the ranking of two variables in a dataset. In brevity, our
application proceeds as follows: we accumulate the ranks, and
once the CQ stop (intentionally by user) we take the
accumulated ranking of the original aggregations (w/o
sampling) and the one calculated through SAOS (and
comparatively speaking, through SpSS-based SRS baseline).
and we serve to Spearman’s rho, and thereby we apply
ρrg= cov(ranknos, ranksamp) / (σranknos

 . σranksamp
) , where

ρrg (pronounced rho) is spearman’s correlation coefficient

applied for ranking statistics , cov(ranknos, ranksamp) is the
covariance of the rank variables, σ௥௔௡k೙೚ೞ

 and σ௥௔௡௞ೞೌ೘೛
 are the

standard deviations of the rank variables, w/o and with
sampling, respectively.

IV. SPATIALSPE REALIZATION

To show the excellence of SpatialSPE 1 , we have built a
standard-compliant prototype on top of SpSS, following the
trending layered-up software stack. Since, as of this writing,
SRS is not currently implemented for SpSS, and for a fair
comparison, we have implemented a version of SRS that is able
to operate in streaming settings and injected it as a glue to the
SpSS for approximate estimations depending on SRS (we refer
to this as SpSS-based SRS hereafter for short). This was only
possible because we rely on the micro-batching mode of
streaming operation, where streaming tuples are accumulated in
blocks before being dispatched for processing in a Spark
underlying job. Thus, by implanting a frontstage after the
formation of a block and just before partitioning, an SRS can
work as if it was operating in a batch mode (the essence of
micro-batch stream processing).

V. PERFORMANCE EVALUATION AND RESULTS

A. Deployment Settings and Benchmarking

Dataset. For benchmarking, we use the NY City taxicab trips
datasets 2, from which we choose a cohort of six months dataset
(around nine million units) representing data captured through
taxi rides for the first half of 2016. We choose the green taxi
trip records, which include interesting fields capturing, most
importantly, pick-up/drop-off locations and trip distances.

Deployment and experimental settings. We run our system,
SpatialSPE, on a Microsoft Azure HDInsight Cluster hosting
Apache Spark version 2.2.1. It consists of 6 NODES (2 Head +
4 Worker) with 24 cores. Head (2 x D12 v2) nodes , and Worker
(4 x D13 v2) nodes. Each head node operates on 4 cores with 28
GB RAM and 200 GB Local SSD memory, and quantities are
double those figures for worker nodes.

Throughput. We simply define throughput as the count of
processed rows per second. For calculating the throughput for
all systems, including the SpSS-based retrofitted SRS sampling

2 https://www1.nyc.gov

method that we have designed and our SAOS method, we utilize
the StreamingQueryListener (from SpSS) to capture start and
end timestamps and number of processed tuples, then we simply
divide the latter by the total time elapsed during a CQ streaming
session. Throughput is an interesting measurement because it
captures the adaptability of system against fluctuating arrival
rates of oscillating data streams.

B. Results

We report results we have obtained by measuring the metrics
mentioned in § II. We depend on varying four parameters. Those
are sampling fraction, arrival rate, geohash precision and
computing power. As we have two categories of queries (refer
to § II), we measure variations of metrics for each as follows.
Query G1 (linear). We have measured the performance based
on the following linear query: “find the average trip distance of
a NYC taxicab itinerary trip during the first six months of the
year 2016”. Query G2 (Top-N). We use the following query to
measure the performance of ensembles: “group NYC taxi trips
count by specific region (region could be geohash at a granular
level and neighbourhood at a coarser level, e.g. zoom-out) with
descending order”. We have applied the following combinations
of parameter settings; each parameter setting’s group is
specialized in measuring a base category. In parameter setting 1,
we focus on accuracy for both query groups, whereas in the
parameter setting 2, we focus more on throughput.

Parameter settings 1. Varying geohash precision and
sampling fraction. We vary geohash precisions from 30 to 35,
and the sampling fraction from 20% to 80% (with a scale slide

of 20% each). For this combination specifically, we aim at
measuring the accuracy of both query groups G1 and G2.
The combinational graph in Fig. 2 shows the comparison
between SAOS and SpSS-based SRS methods in the language
of accuracy for the estimator of query in G1.
We notice from Fig. 2 that SAOS outperforms SpSS-based SRS
for all geohash precision settings (30 and 35), for both measures,
accuracy loss and relative error. Comparing SAOS to itself with
differing geohash precision, generally speaking, we note that
SAOS have bigger accuracy loss for geohash precision 35
(loss_SAOS 35 in Fig. 2), compared to SAOS accuracy loss at
geohash precision 30 (loss_SAOS 30 in Fig. 2). This is
attributed to that a wider geohash means smaller polygons,
hence smaller number of keys per stratum and less precise
stratification per batch interval that carries over a negative effect
to the estimators and, consequently reduces the accuracy. Fig. 3
shows that under SAOS , for 95% of the possible samples of all
fractions (20% to 80% from the total population size) the
corresponding confidence intervals cover the true value of the
population mean (a.k.a. average), whereas as shown in Fig. 4,
SRS confidence intervals are susceptible to missing the true
value, look at the case of sampling fraction 40%, where the
average true value does not fall within the corresponding
confidence interval and is also marginal on fraction 60%. The
same trend occurs for the 68 CI (though not shown here for the
lack of space). To better understand how SAOS is adept more
than SRS in geo-statistics, we show in Fig. 5 the gain obtained
by applying our method to G1 queries (calculated by applying
gainSAOS , refer to § III). Fig. 6 shows a comparison between our
method SAOS and baselines in terms of accuracy for G2
queries. Ranking precision of SAOS outperforms those for SRS

Fig. 2. Estimation accuracy of SAOS vs. SpSS-based SRS, for G1 queries

Fig. 3. confidence interval 95% of SAOS on average estimator.

Fig. 4. confidence interval 95% of SpSS- based SRS on average estimator.

Fig. 5. Gain by applying SAOS instead of and SpSS-based SRS method

(though almost at par with SRS for fractions 40% and 80% with
geohash precision 30).

Parameter settings 2. Fixing geohash precision at 30, and
varying arrival rate from 1000K to 2000K tuples/second and
sampling fractions between 20% to 80% (20% each step),
including also 1% and 5% to account for strict latency targets.
The number of tuples in each window increases proportionally.
By this parameter setting, we measure the throughput and
latency of Query group 2 (G2), as it is the one that is consisting
of costly stateful aggregations. Throughput is calculated as the
median (i.e., 50th percentile) of ten runs. Fig. 7 shows that SAOS
slightly outperforms SpSS-based SRS. As shown in the
secondary axis to the right of the figure, we rationale this to the
fact that, on average, SpSS-based SRS needs to manage more
geohash key states (for stateful aggregations, trans-trigger
boundaries) than those keys that need to be managed by SAOS.
Both, SpSS-based SRS and SAOS show similar trends for
arrival rate of 2000K tuples/second with SpSS-based SRS
slightly underperforming, though not shown here for the lack of
space.

VI. SUMMARY AND FUTURE RESEARCH FRONTIERS

In this work, we have designed a novel system that targets
spatial approximate processing in fast arriving data streaming
and dynamic scenarios, such as smart cities and urban
computing [15] . We specifically focus on Spark Structured
Streaming (SpSS) as the first in its category which introduces a
fully declarative API for interactive stream processing [6].
However, Spark in its native version does not offer off-the-shelf
solutions for spatial approximate query processing(SAQP), such
as spatial sampling. Aiming at closing this void, we have
designed SpatialSPE and incorporated it within the layers of
SpSS, which then ensures its interoperability with the Spark
ecosystem (specifically in SQL mode), taking full advantage of
the underlying optimizations provided by Spark SQL, while
operating in a more specialized mode (geospatial) and ensuring,
at the same time, that query plans are optimal. To address the
design premises presumed in § II, we are currently working on
designing a controller that first predicts the fluctuation in the
data arrival rate and skewness, thereby utilizes those in
calculating a proportionate sampling fraction, which ensures
preventing the congestion of operators comprising the DAG
graph of the stream processing pipeline, thus meeting the
latency/throughput targets prescribed by the user through SLAs.

ACKNOWLEDGMENT

This research was supported by the SACHER (Smart
Architecture for Cultural Heritage in Emilia Romagna) project
funded by the POR-FESR 2014-20 (no. J32I16000120009)
through CIRI.

REFERENCES
[1] M. Zaharia, T. Das, H. Li, T. Hunter, S. Shenker and I. Stoica,

"Discretized streams: Fault-tolerant streaming computation at scale," in
Proceedings of the Twenty-Fourth ACM Symposium on Operating
Systems Principles, 2013, pp. 423-438.

[2] K. Li and G. Li, "Approximate query processing: what is new and where
to go?" Data Science and Engineering, vol. 3, (4), pp. 379-397,2018.

[3] A. J. Lister and C. T. Scott, "Use of space-filling curves to select sample
locations in natural resource monitoring studies," Environ. Monit.
Assess., vol. 149, (1-4), pp. 71-80, 2009.

[4] D. L. Stevens Jr and A. R. Olsen, "Spatially balanced sampling of natural
resources," Journal of the American Statistical Association, vol. 99,
(465), pp. 262-278, 2004.

[5] A. Grafström, N. L. Lundström and L. Schelin, "Spatially balanced
sampling through the pivotal method," Biometrics, vol. 68, (2), pp. 514-
520, 2012.

[6] M. Armbrust, T. Das, J. Torres, B. Yavuz, S. Zhu, R. Xin, A. Ghodsi, I.
Stoica and M. Zaharia, "Structured streaming: A declarative API for
real-time applications in apache spark," in Proceedings of the 2018
International Conference on Management of Data, 2018, pp. 601-613.

[7] I. M. Al Jawarneh, P. Bellavista, F. Casimiro, A. Corradi and L. Foschini,
"Cost-effective strategies for provisioning NoSQL storage services in
support for industry 4.0," in 2018 IEEE Symposium on Computers and
Communications (ISCC), 2018, pp. 1227.

[8] L. Wang, R. Christensen, F. Li and K. Yi, "Spatial online sampling and
aggregation," Proceedings of the VLDB Endowment, vol. 9, (3), pp. 84-
95, 2015.

[9] S. K. Thompson, "Spatial sampling," Precision Agriculture: Spatial and
Temporal Variability of Environmental Quality, (210), pp. 161, 1997.

[10] S. L. Lohr, Sampling: Design and Analysis. Nelson Education, 2009.
[11] J. Dean and S. Ghemawat, "MapReduce: simplified data processing on

large clusters," Commun ACM, vol. 51, (1), pp. 107-113, 2008.
[12] I. M. Al Jawarneh, P. Bellavista, A. Corradi, L. Foschini, R. Montanari

and A. Zanotti, "In-memory spatial-aware framework for processing
proximity-alike queries in big spatial data," in 2018 IEEE 23rd
International Workshop on Computer Aided Modeling and Design of
Communication Links and Networks (CAMAD), 2018, pp. 1-6.

[13] C. H. Fleming and J. M. Calabrese, "A new kernel density estimator for
accurate home‐range and species‐range area estimation," Methods in
Ecology and Evolution, vol. 8, (5), pp. 571-579, 2017.

[14] A. Lehman, N. O'Rourke, L. Hatcher and E. Stepanski, JMP for Basic
Univariate and Multivariate Statistics: Methods for Researchers and
Social Scientists. Sas Institute, 2013.

[15] Y. Zheng, "Urban computing: Tackling urban challenges using big
data," in 2016 IEEE 24th International Requirements Engineering
Conference (RE), 2016, pp. 3.

Fig. 6. rho by applying SAOS against SpSS SRS-based method

Fig. 7. Throughput comparison SAOS against SpSS-based SRS

