

XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

“© 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for

all other uses, in any current or future media, including reprinting/republishing this material for

advertising or promotional purposes, creating new collective works, for resale or redistribution to

servers or lists, or reuse of any copyrighted component of this work in other works.”

Locality-Preserving Spatial Partitioning for Geo Big

Data Analytics in Main Memory Frameworks

Isam Mashhour Al Jawarneh, Paolo Bellavista , Antonio Corradi, Luca Foschini , Rebecca Montanari

Dipartimento di Informatica – Scienza e Ingegneria, University of Bologna

Viale Risorgimento 2, 40136 Bologna, Italy
{isam.aljawarneh3, paolo.bellavista, antonio.corradi, luca.foschini, rebecca.montanari}@unibo.it

Abstract—The easily reachable IoT edge devices have caused the

accumulation of vast amounts of geo-referenced data traces that

can help in performing deep insightful analytics. Geospatial data

in real geometries are normally clumped into batches and has

strong autocorrelation properties which can be exploited in

discovering interesting insights. Current plain Cloud computing

frameworks are not attuned to the shape of data. Most

importantly, data splitting is an important precursor in data

parallelization mechanisms. Current systems mostly focus on

general data workloads, thus are giving attention mostly to load

balancing while splitting the data to Cloud computing resources.

However, many benefits can be reaped by being attuned to the

spatial characteristics while distributing the data, thus striking a

plausible balance between load balancing and spatial data locality

preservation normally leads to achieving better time-based QoS

goals, which then leads to an optimized provisioning of Cloud

computing resources. In this paper, we have designed a spatial

batch processing engine that comprises a custom spatial data

locality aware partitioning method for disseminating spatial data

loads in Cloud computing clusters. We have also extended a state-

of-art benchmark density-based clustering method that is known

as DBSCAN-MR and implemented a standard compliant

prototype on top of a best-in-breed de facto Cloud-based main

memory processing framework, Apache Spark. Our results show

that our partitioning method with the associated spatial query

optimizers can achieve gains that significantly outperform

baselines

Keywords— spatial join, Spark, DBSCAN, data partitioning,

smart city

I. INTRODUCTION

City planning, urban computing, and participatory healthcare

services [1] are just few examples of innumerable dynamic

application scenarios that require highly scalable architectures

for the management of big data in the arena of IoT. Traditional

beefed-up server central-based computing paradigms could not

catch up with the exponential increase in the data arrival rates.

This has led to the emergence of parallel distributed computing

paradigms for the challenging management of avalanches of big

data loads, deployed mostly in a Cloud or in on-premises

computing Clusters. For example, MapReduce-based [2]

systems. Those frameworks unquestionably need to step over

two pillars to deliver right insights to decision makers. The first

pillar is data partitioning, where huge data loads are split into the

distributed computing resources of the Cloud, aiming at

speeding up the production process by depending on

collaboration by exploiting the processing capacities of multiple

computing nodes. What then remains incumbent is applying a

query optimizer that selects the best query plan and apply it to

the partitioned data. It is then apparent that despite data splitting

is not a target per se, it constitutes a pre-stage that is of a

paramount importance and has a utility in improving (or

conversely deteriorating) the data parallel processing in Cloud

computing deployments. It is often highly desirable to lower the

cross-node shuffling of data in those deployments, aiming at

achieving better time-based QoS goals such as lowering the

latency and achieving a higher throughput. The auto-scaling

methods that are offered by Cloud-based frameworks such as

Apache Spark [3] allow dynamic allocation of computing

resources (i.e., overprovisioning computing and/or storage

resources). By those measures, they aim basically at keeping up

with the fluctuation of data arrival rates. This requires then the

redistribution of data between the processing nodes in what is

known as live data migration. Thus, shuffling, possibly, a huge

amount of data in the network. All in all, more data shuffling can

lead to high congestion in the network, which can at some point

slow down the overall system performance. An important target

in Cloud computing environments would then be minimizing

data shuffling, which can be achieved by a custom spatial data

partitioning method that focuses, most importantly, on achieving

a spatial co-locality awareness by then clumping

geographically-nearby spatial objects into same Cloud

processing nodes. However, the focus of the current literature

has been geared so far mostly toward load balancing during the

partitioning stage, which, at a loosely manner, can be thought of

as sending roughly an equivalent number of data loads to the

processing nodes of the Cloud. Therefore, neglecting the real-

geometrical spatial distribution and statistics of data, such as the

skewness, where geo-referenced points are normally clumped

into few areas in the embedding real geometries [4, 5] .

The contributions of this paper are the following. First, we

design a custom spatially-attuned partitioning method that

achieves plausible degree of spatial data locality preservation in

Cloud cluster computing deployments. It does so by sending

geometrically-nearby spatial objects to same partitions in the

computing Cluster. We also consider load balancing to a lesser

extent. Thereafter, we design a spatial query optimizer that

appropriately exploits the newly added partitioning method in

responding to some of the most expensive and common spatial

analytics in today’s highly dynamic and scalable application

scenarios. For example, density-based clustering. Also, we have

implemented a representative density-based clustering

algorithm and transparently incorporated it within the layers of

a trending spatial Spark-based library known as Spark’s

Magellan 1. We collectively call our system that encompasses

those components under its umbrella as SpatialBPE (short for

Spatial Batch Processing Engine), indicating the fact that it is

optimized for batch in-memory processing frameworks.
The remainder of the paper is organized as follows. We first

discuss brief primers and related background. We thereafter step
through the system design perspectives, explaining the enclosed
algorithms. In what follows, we discuss the results that we have
obtained comparing our new methods with representative
baselines. We conclude the paper by drawing some remarks and
recommending some future research perspectives.

II. BACKGROUND AND THEORETICAL GROUNDING

In this section, we discuss noteworthy grounding foundations for

the ensuing discussions.

A. Primer on Distributed Data Partitioning

In distributed computing environments such as Cloud

computing or an on-premises Cluster computing deployment,

data parallelization means splitting data to computer Cluster

nodes, thereafter, sending an operator instance to each node so

that it is applied there locally to the partitions of data within that

node. Local results are then combined into a single piece which

is then served to the user or forwarded as an intermediate result

to be ingested by sequentially connected operators downstream

(i.e., as part of a directed acyclic graph, DAG, that is composed

of all the stages required for answering a specific query).
An integral part in the process is data splitting (a.k.a.

partitioning). Selecting a highly qualified partitioning scheme
has a utility in determining the overall performance of the
underlying Cloud-based distributed processing system. Given
that current big data is mostly geo-referenced [6] , traditional
partitioning schemes should be revisited and revised to consider
the spatial characteristics of the data. Most importantly, we
consider the spatial data skewness, where for some surveys
spatial data are clumped into few areas in real geometries. In the
next subsection, we explain why neglecting spatial co-locality
while distributing the spatial data in Cloud could potentially bog
down the system performance.

B. Spatial Data Partitioning Goals

An intrinsic problem of the current distributed processing
frameworks is that they are generic and not specifically designed

1 https://github.com/harsha2010/magellan

to handle geospatial data. A fact that can deteriorate the benefits
of parallelization at times, especially in cases where spatial data
is highly skewed, which is a common case that is not unheard
of. A well-performing partitioning scheme should aim at
minimizing the network shuffling during query response. This
can be achieved by better trading off few partitioning goals. We
have identified three conflicting partitioning goals that are
related to geospatial data partitioning, which have utilities in
determining the overall QoS of big spatial data query
processing. Those goals are, i) Load balancing, which alone is
insufficient for a QoS aware processing in patchy spatial data
loads distributions where data tends to be highly skewed [7, 8].
Also, spatial data often show autocorrelations, where nearby
objects are more related than others that may fall farthest [9].
We refer to this spatial characteristic as ii) Spatial Data Locality
(SDL). Preserving SDL while splitting data to processing nodes
in a Cloud has a utility that determines, at times, the overall
performance of the system, by basically minimizing cross-
partition spatial data access operations and shuffling. As a case
of example, proximity-alike spatial queries (such as k-Nearest
Neighborhood, or kNN for short) often seek accessing spatial
points that are clumped into patches in real geometries. Sending
geographically-close-by points to same worker nodes can
reduce the cross-partition access caused by shuffling data over
the network. iii) Boundary Spatial Objects (BSO) minimization.
Considering a planar geometrical earth as a flat surface and
divided into grid cells, then overlayed by an ordering structure
such as Z-order curves, which precedes covering it by
overlapping Minimum Bounding Rectangles (MBRs). Spatial
points that fall exactly in the overlapping areas of the MBRs are
known as Boundary Spatial Objects (BSO). Considering those
in partitioning methods is specifically expensive.

III. RELATED WORKS AND BASELINE SYSTEM

A. Related works

The shortcomings of the traditional spatial data partitioning
schemes have led to the emergence of custom spatial-aware
alternatives. For example, [7, 8] have designed methods that

resemble Sort Tile Recursive (STR) [10] partitioning. Their
method works by ordering the points horizontally and vertically
in reference to their longitude and latitude coordinates.
Thereafter, tiles (horizontal and vertical stripes) are employed to
split the embedding space into (non)-equally-sized cells. Tiles
can be heuristically overviewed as horizontal and vertical lines
that cut the embedding space (imagining the earth flattened out)
in the designated dimension. The selection of tiles locations (i.e.,
longitudes and latitudes) may depend on a cost-based model that
seek to achieve a balance between the three contradicting spatial
data partitioning goals (that are mentioned in section II. B.). Few
methods focus on one partitioning aspect and overoptimize it
against the other goals. For example, [11] have designed a
method that focus on BSO minimization, thus is categorized
under the stripe (tile) partitioning family, where a cost model

seeks optimized tiles locations. In the same vein, other
frameworks simply employ traditional spatial methods. For
example, SpatialSpark [12] supports grid-based partitioning that
simply flattens the earth out and overlay it with a grid network.

They also support an STR-alike method. The problem with
traditional hierarchical schemes such as the grid-based and
quadtree representations is that they do not consider SDL
preservation.

B. Usage Model and Baseline System

There are innumerable manners at which big amounts of geo-
spatially tagged data need to be clustered to reveal the dynamics
of IoT devices mobility. Imagine a scenario where millions of
mobility data traces are collected monthly from IoT edge
devices such as GPS in taxicabs, shared bikes and handheld
devices. In a metropolitan city, there may rise a desire to
understand the dynamicity at which people and vehicles are
commuting daily. Municipalities’ administrations may aim at
revealing interesting insights that can help in making strategic
decisions. For example, deciding where to put new traffic lights
or surveillance cameras. So that they cut the costs by only
putting them in locations with a real need. This need applying
clustering algorithms and costly proximity-alike spatial queries
such as kNN. A well-performing density-based clustering
algorithm depends on a spatial partitioning scheme that most
importantly considers SDL preservation. This is attributed to the
fact that clustering means clumping geometrically-nearby
objects into groups (known as clusters). This means that spatial
data loads that are apportioned based on their spatial
characteristics will end up in same or nearby partitions in the
computing cluster, simplifying the process of clustering at run
time and significantly cutting off the cost associated with a
voluminous network data shuffling. Our baseline system is a
custom partitioning method known as SASAP (short for Spatial
Aware Self-Adaptive Partitioning) that we have designed in
previous works [7, 8]. Also, belongs to the baseline, a spatial
query optimizer method that exploited SASAP in implementing
DBSCAN-MR [13]. SASAP results in a grid with a sorted order
(in both directions, longitudes and latitudes) and applying some
median statistics. The process resorts to a recursive halving in
one-dimension or quartering in two-dimensions. However, we
have found that the computations involved in SASAP induce
additional overheads that, at times, are hardly mitigated by the
benefits the method provides. SASAP requires sorting spatial
data, which is an expensive operation because it is based on
sorting parametrized fields (longitudes and latitudes
representing spatial points), which then requires applying
expensive geometrical operations such as the distance
calculation by Haversine formula [14]. Another limitation in
SASAP and the associated query optimizer is that they were
implemented atop a spatial framework known as GeoSpark [15]
that exploits the traditional Spark abstraction (based on the RDD
[16] abstraction). Thus, missing an important optimization that
is offered by adopting the novel Spark’s DataFrame abstraction
instead [17], which can further improve the time-based QoS
goals (such as lowering the latency) by employing an important
optimizer known as Catalyst in Spark terms. To close those
voids, in this paper, we alternatively have designed a novel
system that overcomes those limitations by being engineered
over an optimized SQL-based spatial processing framework
atop of Spark (known as Spark’s Magellan). Also, we avoid
introducing any costly spatial locality preservation method

2 http://geohash.org/

within the layers of the novel partitioning scheme. We discuss
SpatialBPE in details in the next subsection.

IV. EFFICIENT SPATIAL PROCESSING SYSTEM FOR MAIN

MEMORY FRAMEWORKS

SpatialBPE constitutes basically two main parts. A spatial
custom partitioning method that we term as SCAP (discussed
shortly) and an improved query optimizer that exploits SCAP in
optimizing a density-based clustering algorithm (known as
DBSCAN-MR [13]). We explain those in detail in the next
subsections.

A. Spatial Co-Locality-aware partitioner (SCAP)

In this paper, we have designed a spatial aware adaptive big

data partitioning scheme for distributed in-memory big data

batch processing frameworks. More formally, the workflow of

our method is listed in algorithm 1.

The method starts by geocoding the spatial points. We focus

in this paper on reducing the dimensionality by using the

geohash 2 encoding (which belongs to the family of z-order

curves). We then apply an efficient relatively cheap join method

readily available through Spark’s Magellan for joining the

spatial points with a file containing neighbourhoods (imagining

the earth flattened out into a two-dimensional planar geometry

representation, those are polygons that represent the city

administrative divisions put by municipalities).

Algorithm 1 SCAP partitioning scheme

 /* points: coordinates in longitude/latitude format,

neighbourhoods: polygons representing neighbourhoods of

the embedding space, geoPrec: geohash precision */
 1: tsl = [] //each element → tuples of a neighbourhood

 finalist = []

2: coveringGeo  retrieveCoveringGeo (neighbourhoods,
geoPrec) /* List of geohashes covering each neighbourhood*/

3: GeoCodedTuples  geoEncode(tuples)

 /* performing an inner join on geohash by applying the
‘filter’ stage in the filter-and-refine spatial join approach */

 /* tsl: list of tuples assigned to neighborhoods. we do this join

using Spark’s Magellan*/

4: tsl = GeoCodedTuples.join(coveringGeo, GeoCodedTuples
(“index”) == coveringGeo (“index”))

5: For i = 0 until tsl.size

6: //currently ‘threshold’ is calculated by pre-profiling the data

7: If (tsl[i]. count > threshold)

8: split_ tsl = split (tsl[i])

9: finalist.append (split_ tsl)

10 Else
11: finalist.append (tsl[i])
12: End

13: End
14: For j = 0 until finalist.size

 //materializing data chunks in partitions
15: partition[j]. populate (finalist[j])

16: End

The result of this process is a list of neighbourhoods, where

each neighbourhood list contains all the points that

geometrically belongs to it. This stage constitutes the strategy

we do for clumping geometrically co-located objects into

batches that can then be sent to same partitions for processing.

However, since geohash is an approximation and since we are

applying only the ‘filter’ stage of the ‘filter-and-refine’ spatial

join approach, then the result of the approximate join is

susceptible to generating ‘false positives’. Those are the objects

that belong to the geohash covering of a neighbourhood, but

however in real geometries they do not. We call such objects in

this paper as BSOs. In this paper, we focus mainly on preserving

spatial data locality as this has shown to reduce data shuffling

significantly during a response to a proximity-alike spatial

query. In addition, we focus to a lesser extent on load balancing

and BSO minimization. We also achieve a good degree of BSO

minimization by tuning the tweakable geohash precision. The

workflow of SCAP is schematically shown in Fig. 1.

The output of the SCAP algorithm are partitions distributed

to the computing resources of the Cloud for parallel processing.

Each partition contains roughly fair amount of geometrically-

nearby spatial tuples.

To understand the way at which our method replicates BSOs,

consider the heuristic overview in Fig. 2. This figure represents

the administrative neighbourhood divisions for part of the city

of Milan in Italy. All objects (tuples) that belong to g12, g14

and g22 will be replicated in partitions that host tuples from N1

and N2. This is so because, geohash encoding is an

approximation and by such representation, tuples with same

geohash value may belong to different neighbourhoods. Such

points need then to be replicated to bordering cells because at

the time we do not know to which neighbourhood (polygon) the

point belongs by simply looking at its geohash representation.

B. Spatial Query Optimization in Main Memory Systems

Query optimizers in the current state-of-art systems are not

attuned to the shape of the processed spatial data, causing

substantial amounts of data to be shuffled around by the

underlying optimizers, thus deteriorating the benefits of

parallelization. A spatially-attuned query optimizer seeks at

selecting efficient query plan that minimizes the shuffling of

data over the network.

Density-based clustering algorithms cluster spatial objects by

considering high-dense regions as clusters, whereas considering

others as noise. Accounting for SDL preservation and BSOs

minimization while applying those algorithms in Cloud is

challenging.

A well-performing Cloud-based density-based clustering

algorithms is DBSCAN-MR [13] , which operates as follows.

First, it partitions input data to worker nodes of Cloud

deployment. This is followed by applying a local version of the

operator instance of the plain DBSCAN for data in each worker

node. It then combines local results into unified final clusters.

An intrinsic challenge with parallelizing DBSCAN-MR is the

need to replicate BSOs to overlapping cells (e.g., cells that result

from overlaying the grid representation of the embedding space

with approximate Minimum Bounding Rectangles (MBR)),

thereafter a post-replication refinement stage is needed to

discard extra points.
We have implemented a retrofitted version of DBSCAN-MR

over Spark’s Magellan which is not natively supported. Our
retrofitted version exploits our SCAP partitioning scheme,
where we apply SCAP as a frontstage for splitting data to
achieve a lower latency during the application of the retrofitted
DBSCAN-MR. For our method SCAP, we simply duplicate the
BSOs that belong to overlapping geohashes. The size of the
BSOs space then depends on two factors. The data skewness and
the geohash precision (a multiple of 5). On the contrary, for the
SASAP baseline from our previous work [7, 8] , the
mathematical model that have been used for replicating BSOs
was expensive despite at times leading to less replication. A
tension then between some QoS goals is always present. Stated
another way, less BSOs means a desirable higher Cloud
computing resource utilization, but an undesirable high latency
as the replication method used is expensive, while more BSOs
but depending on a cheap replication method yields a lower
resources utilization in bid for a highly desirable lower latency,
which is the benefit we reap by applying SCAP. Since in this
paper we are focusing on time-based QoS goals (e.g., lowering
the latency), then SCAP is favorable.

Fig. 2. Part of a heuristic geohash covering for part of the city of
Milan in Italy. In the legend, N1 is the first neighbourhood while N2

is the second. g11 is the first geohash covering for N1, while g21 is

the first geohash covering for N2 and so on.

Fig. 1. Spatial co-Locality-aware partitioner (SCAP)

V. IMPLEMENTATION INSIGHTS

To show how SCAP and the associated optimizers (forming

together our system SpatialBPE) are adept in achieving time-

based QoS goals, we have built a standard-compliant prototype

on top of Spark [3] . We have basically extended Spark’s

Magellan, which is a spatial-aware library that is optimized on

top of Spark. Spark cores offers an abstract module that allows

the creation of custom partitioning methods. We have

overloaded that module to implement our SCAP scheme.

A. Deployment Settings and Benchmarking

This section discusses deployment settings that we have

selected to evaluate the ability of SCAP and the associated

query optimizer.

Dataset. For benchmarking, we use the NY City taxicab trips

datasets 3 , from which we choose a cohort of around 150k

points representing a portion of data captured through taxi rides

for the first half of 2016. We have selected the green taxi trips

that include fields registering pick-up/drop-off locations. The

other dataset is a cohort of 150k spatial points collected during

the ParticipAct project , which is a project that has been started

at University of Bologna in Italy aiming at achieving the People

as a Service (PaaS) vision, where people act as active collectors

of data that can be exploited and applied to interesting scenarios

such as DBSCAN. Every spatial point has a user locational data

(in planar GPS coordinates longitude/latitude) in addition to

timestamps pointing to the times of collection.

Deployment and experimental settings. We run our system,

SpatialBPE, on a Microsoft Azure HDInsight Cluster hosting

Apache Spark version 2.2.1. It consists of 6 NODES (2 Head +

4 Worker) with 24 cores. Head (2 x D12 v2) nodes , and Worker

(4 x D13 v2) nodes. Each head node operates on 4 cores with 28

GB RAM and 200 GB Local SSD memory, and quantities are

double those figures for worker nodes.
Parameter settings. We have selected to intermix the

tweakable parameters in a way that enables us to measure the
capabilities of SCAP and its correlated optimizers in achieving
a wide choice of qualities. I) Varying the DBSCAN-MR
parameters values. We first profile the datasets by applying a
kNN distance histogram method in order to select the values for
epsilon and minPoints, which are the parameters required by
DBSCAN-MR, where epsilon is the maximum distance of a
point to be considered for a specific cluster. minPoints is the

3 https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page

minimum number of points that altogether form a cluster. From
the histogram, the best epsilon/minPoints combination are those
that fall on the so-called ‘knee’ of the graph. We have found that
there are multiple applicable values, from which we choose the
combinations of 0.09 epsilon, 200 minPoints, and the other
combination is 0.15 epsilon and 300 minPoints. By this
parametrization, we aim at measuring the ability of our methods
in achieving low-latency against the baseline method. II) Fixing
DBSCAN-MR parameter settings and varying the geohash
precision. By this setting, we aim at measuring the ability of our
method in striking a balance between the spatial partitioning
goals, which then transfers an effect that is reflected on the QoS
goals (e.g., latency, resource utilization).

B. Performance Metrics

We use the end-to-end latency for comparing a time-based QoS.

Latency follows a low-is-better trend. Latency is the total time

required for processing all tuples that arrive during a running

session in an end-to-end fashion (i.e., passing through all the

operators of a DAG operator graph), from the moment data is

ingested by the system until results are served to the user.

We also apply another performance metric that calculates the

data size with BSOs. By this metric we aim at measuring the

resource utilization QoS, considering that it is a tradeoff which

collide with the lowering latency QoS goal.

Furthermore, to quantify the gain of the geohash precision

adaptation, we define and apply

adapGain = (((BSO
30

 - BSO35) BSO30) . 100)⁄ %

Where 𝐵𝑆𝑂30 is the number of BSOs resulted through the

geohash precision 30, whereas 𝐵𝑆𝑂35 is the number of BSOs

resulted through the geohash precision 35.

C. Results and Discussion

We have tested SCAP against SASAP by using the first

parameter enumeration. As shown in figures 3 and 4,

respectively, our retrofitted version of DBSCAN-MR over

SCAP is adept in achieving QoS time-based goals (specifically

a lower latency) better than the baseline with which we compare

that alternatively exploits SASAP partitioning method from the

literature. Notice how an increased number of bordering

replicated points (i.e., BSOs) implies a near-linear similar-

pattern increase in running times of both implementations. This

applies also for the case of value of epsilon that is equal to 0.09

Fig. 3. Running times and number of BSOs of our retrofitted version
of DBSCAN-MR over SCAP against SASAP-based version tested on

NYC taxicab datasets. Parameters: eps 0.15, minPts 300, geohash 30.

0

50

100

150

200

250

300

350

0

200

400

600

800

1000

1200

1400

1600

10 30 50 100 120

d
a
ta

 s
iz

e
 w

it
h

 B
S

O
s

T
h

o
u

s
a
n

d
s

ti
m

e
 (

s
e
c
o

n
d

s
)

data size (x 103 tuples)

BSOs SCAP BSOs SASAP time SCAP time SASAP

Fig. 5. The effect of tweaking geohash precision on the number of

BSOs generated by SCAP on NYC taxicab dataset. Parameters: eps

0.15, minPts 300, geohash 35

0

50

100

150

200

0

500

1000

1500

2000

10 30 50 100 120 d
a
ta

 s
iz

e
 w

it
h

 B
S

O
s

T
h

o
u

s
a
n

d
s

ti
m

e
 (

s
e
c
o

n
d

s
)

data size (x 103 tuples)

BSOs SCAP BSOs SASAP

time SCAP time SASAP

Fig. 4. Running times and number of BSOs of our retrofitted version

of DBSCAN-MR over SCAP against SASAP-based using the

ParticipAct dataset. Parameters: eps 0.15, minPts 300, geohash 30.

0

50

100

150

200

0

500

1000

1500

2000

2500

10 30 50 100

d
a

ta
 s

iz
e

 w
it

h
 B

S
O

s

T
h

o
u

s
a

n
d

s

ti
m

e
 (

s
e

c
o

n
d

s
)

data size (x 103 tuples)

BSOs SCAP BSOs SASAP time SCAP time SASAP

and minPoints equals to 200. However, in both cases it

negatively affects the running time of our new method SCAP

version to a lesser extent as opposed to SASAP baseline

counterpart.

Another tunable parameter in our settings is the geohash

precision, which then has a utility in determining the number of

BSOs that will be marked for replication. Fig. 5 shows that

changing the tweakable geohash from 30 to 35 precision yields

less BSOs for SCAP. This is because a wider geohash precision

implies a smaller size of the cells that this geohash order pass

through, which then reduces the overlapping areas between

bordering cells, thereby reducing the BSOs count.

Fig. 6 shows that we obtain roughly 32% gain by

changing the geohash precision. We sometimes term such gain

as the design effect as it is carried over as a result achieved by

applying the design of our SCAP scheme.

VI. CONCLUSIONS AND FUTURE WORKS

Research efforts in communication service provisioning are

currently geared toward designing communication networks

that serve as robust infrastructures for the management of huge

amounts of data with QoS guarantees. Clouds are built with

such design primitives being prioritized. However, at times, the

way that parallel data processing frameworks act in such

settings may deteriorate the benefits we reap by the elasticity

provided by such infrastructures. To assist those efforts, we are

tackling the problem from the perspective of optimizing the

deployed data processing systems so that they synergistically

achieve the goals envisaged by such infrastructures. A special

attention in this paper has been given to the pivotal problem of

spatial data partitioning in Cloud computing frameworks.

Specifically, we focus on in-memory systems that need to

process data in fast memory with parsimonious resources. We

have designed a locality-preserving spatial partitioning scheme

for quality spatial analytics in distributed main memory

frameworks. Our method termed SCAP, basically focuses on

spatial locality problem to help in minimizing the data shuffling

around the network while processing costly proximity-alike

queries. In this paper, we specifically focus on a costly density-

based clustering algorithm. As a future potential research

frontier, we could offload a portion of the data partitioning to

IoT devices near the edge. Thus, further assisting novel network

designs in achieving high QoS.

ACKNOWLEDGMENT

This research was supported by the IDEHA project funded by

PON “RICERCA E INNOVAZIONE” 2014-2020 (no.

J46C18000440008).

REFERENCES

[1] I. M. Aljawarneh, P. Bellavista, C. R. De Rolt and L. Foschini, "Dynamic
identification of participatory mobile health communities," in Cloud
Infrastructures, Services, and IoT Systems for Smart Cities. Springer,
2017, pp. 208-217

[2] J. Dean and S. Ghemawat, "MapReduce: simplified data processing on
large clusters," Commun ACM, vol. 51, (1), pp. 107-113, 2008.

[3] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker and I. Stoica,
"Spark: Cluster computing with working sets." HotCloud, vol. 10, (10-
10), pp. 95, 2010.

[4] M. Tang, Y. Yu, Q. M. Malluhi, M. Ouzzani and W. G. Aref,
"Locationspark: A distributed in-memory data management system for
big spatial data," Proceedings of the VLDB Endowment, vol. 9, (13), pp.
1565-1568, 2016.

[5] F. Wang, A. Aji and H. Vo, "High performance spatial queries for spatial
big data: from medical imaging to GIS," Sigspatial Special, vol. 6, (3), pp.
11-18, 2015.

[6] I. M. Al Jawarneh, P. Bellavista, F. Casimiro, A. Corradi and L. Foschini,
"Cost-effective strategies for provisioning NoSQL storage services in
support for industry 4.0," in 2018 IEEE Symposium on Computers and
Communications (ISCC), 2018, pp. 1227.

[7] I. M. Aljawarneh, P. Bellavista, A. Corradi, R. Montanari, L. Foschini and
A. Zanotti, "Efficient spark-based framework for big geospatial data
query processing and analysis," in 2017 IEEE Symposium on Computers
and Communications (ISCC), 2017, pp. 851-856.

[8] I. M. Al Jawarneh, P. Bellavista, A. Corradi, L. Foschini, R. Montanari
and A. Zanotti, "In-memory spatial-aware framework for processing
proximity-alike queries in big spatial data," in 2018 IEEE 23rd
International Workshop on Computer Aided Modeling and Design of
Communication Links and Networks (CAMAD), 2018, pp. 1-6.

[9] I. M. Al Jawarneh, P. Bellavista, L. Foschini and R. Montanari, "Spatial-
aware approximate big data stream processing," in 2019 IEEE Global
Communications Conference (GLOBECOM), 2019, pp. 1-6.

[10] S. T. Leutenegger, M. A. Lopez and J. Edgington, "STR: A simple and
efficient algorithm for R-tree packing," in Proceedings 13th International
Conference on Data Engineering, 1997, pp. 497-506.

[11] H. Vo, A. Aji and F. Wang, "SATO: A spatial data partitioning framework
for scalable query processing," in Proceedings of the 22nd ACM
SIGSPATIAL International Conference on Advances in Geographic
Information Systems, 2014, pp. 545-548.

[12] S. You, J. Zhang and L. Gruenwald, "Large-scale spatial join query
processing in cloud," in 2015 31st IEEE International Conference on Data
Engineering Workshops, 2015, pp. 34-41.

[13] B. Dai and I. Lin, "Efficient map/reduce-based dbscan algorithm with
optimized data partition," in 2012 IEEE Fifth International Conference on
Cloud Computing, 2012, pp. 59-66.

[14] C. C. Robusto, "The cosine-haversine formula," The American
Mathematical Monthly, vol. 64, (1), pp. 38-40, 1957.

[15] J. Yu, J. Wu and M. Sarwat, "Geospark: A cluster computing framework
for processing large-scale spatial data," in Proceedings of the 23rd
SIGSPATIAL International Conference on Advances in Geographic
Information Systems, 2015, pp. 70.

[16] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley, M. J.
Franklin, S. Shenker and I. Stoica, "Resilient distributed datasets: A fault-
tolerant abstraction for in-memory cluster computing," in Proceedings of
the 9th USENIX Conference on Networked Systems Design and
Implementation, 2012, pp. 2.

[17] M. Armbrust, R. S. Xin, C. Lian, Y. Huai, D. Liu, J. K. Bradley, X. Meng,
T. Kaftan, M. J. Franklin and A. Ghodsi, "Spark sql: Relational data
processing in spark," in Proceedings of the 2015 ACM SIGMOD
International Conference on Management of Data, 2015, pp. 1383-1394.

Fig. 6. Adaptation gain we reap by tweaking geohash precision, from
30 to 35 in this case.

29
30
31
32
33
34
35

0 50 100 150 200

a
d

a
p

G
a

in

input size

adapGain, ParticipAct dataset

