
 

XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE 

“© 2020 IEEE.  Personal use of this material is permitted.  Permission from IEEE must be obtained for 

all other uses, in any current or future media, including reprinting/republishing this material for 

advertising or promotional purposes, creating new collective works, for resale or redistribution to 

servers or lists, or reuse of any copyrighted component of this work in other works.” 

Locality-Preserving Spatial Partitioning for Geo Big 

Data Analytics in Main Memory Frameworks 

Isam Mashhour Al Jawarneh, Paolo Bellavista , Antonio Corradi, Luca Foschini , Rebecca Montanari 

Dipartimento di Informatica – Scienza e Ingegneria, University of Bologna 

Viale Risorgimento 2, 40136 Bologna, Italy 
{isam.aljawarneh3, paolo.bellavista, antonio.corradi, luca.foschini, rebecca.montanari}@unibo.it 

Abstract—The easily reachable IoT edge devices have caused the 

accumulation of vast amounts of geo-referenced data traces that 

can help in performing deep insightful analytics. Geospatial data 

in real geometries are normally clumped into batches and has 

strong autocorrelation properties which can be exploited in 

discovering interesting insights. Current plain Cloud computing 

frameworks are not attuned to the shape of data. Most 

importantly, data splitting is an important precursor in data 

parallelization mechanisms. Current systems mostly focus on 

general data workloads, thus are giving attention mostly to load 

balancing while splitting the data to Cloud computing resources. 

However, many benefits can be reaped by being attuned to the 

spatial characteristics while distributing the data, thus striking a 

plausible balance between load balancing and spatial data locality 

preservation normally leads to achieving better time-based QoS 

goals, which then leads to an optimized provisioning of Cloud 

computing resources. In this paper, we have designed a spatial 

batch processing engine that comprises a custom spatial data 

locality aware partitioning method for disseminating spatial data 

loads in Cloud computing clusters. We have also extended a state-

of-art benchmark density-based clustering method that is known 

as DBSCAN-MR and implemented a standard compliant 

prototype on top of a best-in-breed de facto Cloud-based main 

memory processing framework, Apache Spark. Our results show 

that our partitioning method with the associated spatial query 

optimizers can achieve gains that significantly outperform 

baselines  

Keywords— spatial join, Spark, DBSCAN, data partitioning, 

smart city 

I. INTRODUCTION 

City planning, urban computing, and participatory healthcare 

services [1] are just few examples of innumerable dynamic 

application scenarios that require highly scalable architectures 

for the management of big data in the arena of IoT. Traditional 

beefed-up server central-based computing paradigms could not 

catch up with the exponential increase in the data arrival rates. 

This has led to the emergence of parallel distributed computing 

paradigms for the challenging management of avalanches of big 

data loads, deployed mostly in a Cloud or in on-premises 

computing Clusters. For example, MapReduce-based [2] 

systems. Those frameworks unquestionably need to step over 

two pillars to deliver right insights to decision makers. The first 

pillar is data partitioning, where huge data loads are split into the 

distributed computing resources of the Cloud, aiming at 

speeding up the production process by depending on 

collaboration by exploiting the processing capacities of multiple 

computing nodes. What then remains incumbent is applying a 

query optimizer that selects the best query plan and apply it to 

the partitioned data. It is then apparent that despite data splitting 

is not a target per se, it constitutes a pre-stage that is of a 

paramount importance and has a utility in improving (or 

conversely deteriorating) the data parallel processing in Cloud 

computing deployments. It is often highly desirable to lower the 

cross-node shuffling of data in those deployments, aiming at 

achieving better time-based QoS goals such as lowering the 

latency and achieving a higher throughput. The auto-scaling 

methods that are offered by Cloud-based frameworks such as 

Apache Spark [3] allow dynamic allocation of computing 

resources (i.e., overprovisioning computing and/or storage 

resources). By those measures, they aim basically at keeping up 

with the fluctuation of data arrival rates. This requires then the 

redistribution of data between the processing nodes in what is 

known as live data migration. Thus, shuffling, possibly, a huge 

amount of data in the network. All in all, more data shuffling can 

lead to high congestion in the network, which can at some point 

slow down the overall system performance. An important target 

in Cloud computing environments would then be minimizing 

data shuffling, which can be achieved by a custom spatial data 

partitioning method that focuses, most importantly, on achieving 

a spatial co-locality awareness by then clumping 

geographically-nearby spatial objects into same Cloud 

processing nodes. However, the focus of the current literature 

has been geared so far mostly toward load balancing during the 

partitioning stage, which, at a loosely manner, can be thought of 

as sending roughly an equivalent number of data loads to the 

processing nodes of the Cloud. Therefore, neglecting the real-

geometrical spatial distribution and statistics of data, such as the 

skewness, where geo-referenced points are normally clumped 

into few areas in the embedding real geometries [4, 5] .  



 

 

The contributions of this paper are the following. First, we 

design a custom spatially-attuned partitioning method that 

achieves plausible degree of spatial data locality preservation in 

Cloud cluster computing deployments. It does so by sending 

geometrically-nearby spatial objects to same partitions in the 

computing Cluster. We also consider load balancing to a lesser 

extent. Thereafter, we design a spatial query optimizer that 

appropriately exploits the newly added partitioning method in 

responding to some of the most expensive and common spatial 

analytics in today’s highly dynamic and scalable application 

scenarios. For example, density-based clustering.  Also, we have 

implemented a representative density-based clustering 

algorithm and transparently incorporated it within the layers of 

a trending spatial Spark-based library known as Spark’s 

Magellan 1. We collectively call our system that encompasses 

those components under its umbrella as SpatialBPE (short for 

Spatial Batch Processing Engine), indicating the fact that it is 

optimized for batch in-memory processing frameworks. 
The remainder of the paper is organized as follows. We first 

discuss brief primers and related background. We thereafter step 
through the system design perspectives, explaining the enclosed 
algorithms. In what follows, we discuss the results that we have 
obtained comparing our new methods with representative 
baselines. We conclude the paper by drawing some remarks and 
recommending some future research perspectives. 

II. BACKGROUND AND THEORETICAL GROUNDING 

In this section, we discuss noteworthy grounding foundations for 

the ensuing discussions. 

A. Primer on Distributed Data Partitioning 

In distributed computing environments such as Cloud 

computing or an on-premises Cluster computing deployment, 

data parallelization means splitting data to computer Cluster 

nodes, thereafter, sending an operator instance to each node so 

that it is applied there locally to the partitions of data within that 

node. Local results are then combined into a single piece which 

is then served to the user or forwarded as an intermediate result 

to be ingested by sequentially connected operators downstream 

(i.e., as part of a directed acyclic graph, DAG, that is composed 

of all the stages required for answering a specific query).  
An integral part in the process is data splitting (a.k.a. 

partitioning). Selecting a highly qualified partitioning scheme 
has a utility in determining the overall performance of the 
underlying Cloud-based distributed processing system. Given 
that current big data is mostly geo-referenced [6] , traditional 
partitioning schemes should be revisited and revised to consider 
the spatial characteristics of the data. Most importantly, we 
consider the spatial data skewness, where for some surveys 
spatial data are clumped into few areas in real geometries. In the 
next subsection, we explain why neglecting spatial co-locality 
while distributing the spatial data in Cloud could potentially bog 
down the system performance. 

B. Spatial Data Partitioning Goals 

An intrinsic problem of the current distributed processing 
frameworks is that they are generic and not specifically designed 
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to handle geospatial data. A fact that can deteriorate the benefits 
of parallelization at times, especially in cases where spatial data 
is highly skewed, which is a common case that is not unheard 
of. A well-performing partitioning scheme should aim at 
minimizing the network shuffling during query response. This 
can be achieved by better trading off few partitioning goals. We 
have identified three conflicting partitioning goals that are 
related to geospatial data partitioning, which have utilities in 
determining the overall QoS of big spatial data query 
processing. Those goals are, i) Load balancing, which alone is 
insufficient for a QoS aware processing in patchy spatial data 
loads distributions where data tends to be highly skewed [7, 8]. 
Also, spatial data often show autocorrelations, where nearby 
objects are more related than others that may fall farthest [9]. 
We refer to this spatial characteristic as ii) Spatial Data Locality 
(SDL). Preserving SDL while splitting data to processing nodes 
in a Cloud has a utility that determines, at times, the overall 
performance of the system, by basically minimizing cross-
partition spatial data access operations and shuffling. As a case 
of example, proximity-alike spatial queries (such as k-Nearest 
Neighborhood, or kNN for short) often seek accessing spatial 
points that are clumped into patches in real geometries. Sending 
geographically-close-by points to same worker nodes can 
reduce the cross-partition access caused by shuffling data over 
the network. iii) Boundary Spatial Objects (BSO) minimization. 
Considering a planar geometrical earth as a flat surface and 
divided into grid cells, then overlayed by an ordering structure 
such as Z-order curves, which precedes covering it by 
overlapping Minimum Bounding Rectangles (MBRs). Spatial 
points that fall exactly in the overlapping areas of the MBRs are 
known as Boundary Spatial Objects (BSO). Considering those 
in partitioning methods is specifically expensive. 

III. RELATED WORKS AND BASELINE SYSTEM 

A. Related works 

The shortcomings of the traditional spatial data partitioning 
schemes have led to the emergence of custom spatial-aware 
alternatives.  For example, [7, 8] have designed methods that 

resemble Sort Tile Recursive (STR) [10] partitioning. Their 
method works by ordering the points horizontally and vertically 
in reference to their longitude and latitude coordinates. 
Thereafter, tiles (horizontal and vertical stripes) are employed to 
split the embedding space into (non)-equally-sized cells. Tiles 
can be heuristically overviewed as horizontal and vertical lines 
that cut the embedding space (imagining the earth flattened out) 
in the designated dimension. The selection of tiles locations (i.e., 
longitudes and latitudes) may depend on a cost-based model that 
seek to achieve a balance between the three contradicting spatial 
data partitioning goals (that are mentioned in section II. B.). Few 
methods focus on one partitioning aspect and overoptimize it 
against the other goals. For example,  [11] have designed a 
method that focus on BSO minimization, thus is categorized 
under the stripe (tile) partitioning family, where a cost model 

seeks optimized tiles locations. In the same vein, other 
frameworks simply employ traditional spatial methods. For 
example, SpatialSpark [12] supports grid-based partitioning that 
simply flattens the earth out and overlay it with a grid network. 



 

 

They also support an STR-alike method. The problem with 
traditional hierarchical schemes such as the grid-based and 
quadtree representations is that they do not consider SDL 
preservation. 

B. Usage Model and Baseline System 

There are innumerable manners at which big amounts of geo-
spatially tagged data need to be clustered to reveal the dynamics 
of IoT devices mobility. Imagine a scenario where millions of 
mobility data traces are collected monthly from IoT edge 
devices such as GPS in taxicabs, shared bikes and handheld 
devices. In a metropolitan city, there may rise a desire to 
understand the dynamicity at which people and vehicles are 
commuting daily. Municipalities’ administrations may aim at 
revealing interesting insights that can help in making strategic 
decisions. For example, deciding where to put new traffic lights 
or surveillance cameras. So that they cut the costs by only 
putting them in locations with a real need. This need applying 
clustering algorithms and costly proximity-alike spatial queries 
such as kNN. A well-performing density-based clustering 
algorithm depends on a spatial partitioning scheme that most 
importantly considers SDL preservation. This is attributed to the 
fact that clustering means clumping geometrically-nearby 
objects into groups (known as clusters). This means that spatial 
data loads that are apportioned based on their spatial 
characteristics will end up in same or nearby partitions in the 
computing cluster, simplifying the process of clustering at run 
time and significantly cutting off the cost associated with a 
voluminous network data shuffling. Our baseline system is a 
custom partitioning method known as SASAP (short for Spatial 
Aware Self-Adaptive Partitioning) that we have designed in 
previous works [7, 8]. Also, belongs to the baseline, a spatial 
query optimizer method that exploited SASAP in implementing 
DBSCAN-MR [13]. SASAP results in a grid with a sorted order 
(in both directions, longitudes and latitudes) and applying some 
median statistics. The process resorts to a recursive halving in 
one-dimension or quartering in two-dimensions. However, we 
have found that the computations involved in SASAP induce 
additional overheads that, at times, are hardly mitigated by the 
benefits the method provides. SASAP requires sorting spatial 
data, which is an expensive operation because it is based on 
sorting parametrized fields (longitudes and latitudes 
representing spatial points), which then requires applying 
expensive geometrical operations such as the distance 
calculation by Haversine formula [14]. Another limitation in 
SASAP and the associated query optimizer is that they were 
implemented atop a spatial framework known as GeoSpark [15]  
that exploits the traditional Spark abstraction (based on the RDD 
[16]  abstraction). Thus, missing an important optimization that 
is offered by adopting the novel Spark’s DataFrame abstraction 
instead [17], which can further improve the time-based QoS 
goals (such as lowering the latency) by employing an important 
optimizer known as Catalyst in Spark terms. To close those 
voids, in this paper, we alternatively have designed a novel 
system that overcomes those limitations by being engineered 
over an optimized SQL-based spatial processing framework 
atop of Spark (known as Spark’s Magellan). Also, we avoid 
introducing any costly spatial locality preservation method 
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within the layers of the novel partitioning scheme. We discuss 
SpatialBPE in details in the next subsection. 

IV. EFFICIENT SPATIAL PROCESSING SYSTEM FOR MAIN 

MEMORY FRAMEWORKS 

SpatialBPE constitutes basically two main parts. A spatial 
custom partitioning method that we term as SCAP (discussed 
shortly) and an improved query optimizer that exploits SCAP in 
optimizing a density-based clustering algorithm (known as 
DBSCAN-MR [13] ). We explain those in detail in the next 
subsections. 

A. Spatial Co-Locality-aware partitioner (SCAP) 

In this paper, we have designed a spatial aware adaptive big 

data partitioning scheme for distributed in-memory big data 

batch processing frameworks. More formally, the workflow of 

our method is listed in algorithm 1.  

The method starts by geocoding the spatial points. We focus 

in this paper on reducing the dimensionality by using the 

geohash 2  encoding (which belongs to the family of z-order 

curves). We then apply an efficient relatively cheap join method 

readily available through Spark’s Magellan for joining the 

spatial points with a file containing neighbourhoods (imagining 

the earth flattened out into a two-dimensional planar geometry 

representation, those are polygons that represent the city 

administrative divisions put by municipalities). 

Algorithm 1 SCAP partitioning scheme 

 /* points: coordinates in longitude/latitude format, 

neighbourhoods: polygons representing neighbourhoods of 

the embedding space, geoPrec: geohash precision */ 
 1: tsl = [] //each element → tuples of a neighbourhood 

 finalist = [] 

2: coveringGeo   retrieveCoveringGeo (neighbourhoods, 
geoPrec) /* List of geohashes covering each neighbourhood*/ 

3: GeoCodedTuples  geoEncode(tuples) 

 /* performing an inner join on geohash by applying the 
‘filter’ stage in the filter-and-refine spatial join approach */ 

 /* tsl: list of tuples assigned to neighborhoods. we do this join 

using Spark’s Magellan*/ 

4: tsl = GeoCodedTuples.join(coveringGeo,  GeoCodedTuples 
(“index”) ==  coveringGeo (“index”)) 

5: For i = 0 until tsl.size 

6: //currently ‘threshold’ is calculated by pre-profiling the data 

7:  If (tsl[i]. count > threshold) 

8:   split_ tsl = split (tsl[i]) 

9:   finalist.append (split_ tsl) 

10  Else  
11:   finalist.append (tsl[i]) 
12:  End 

13: End 
14: For j = 0 until finalist.size 

 //materializing data chunks in partitions 
15:  partition[j]. populate (finalist[j]) 

16: End 

 



 

 

The result of this process is a list of neighbourhoods, where 

each neighbourhood list contains all the points that 

geometrically belongs to it. This stage constitutes the strategy 

we do for clumping geometrically co-located objects into 

batches that can then be sent to same partitions for processing. 

However, since geohash is an approximation and since we are 

applying only the ‘filter’ stage of the ‘filter-and-refine’ spatial 

join approach, then the result of the approximate join is 

susceptible to generating ‘false positives’. Those are the objects 

that belong to the geohash covering of a neighbourhood, but 

however in real geometries they do not. We call such objects in 

this paper as BSOs. In this paper, we focus mainly on preserving 

spatial data locality as this has shown to reduce data shuffling 

significantly during a response to a proximity-alike spatial 

query. In addition, we focus to a lesser extent on load balancing 

and BSO minimization. We also achieve a good degree of BSO 

minimization by tuning the tweakable geohash precision. The 

workflow of SCAP is schematically shown in Fig.  1. 

The output of the SCAP algorithm are partitions distributed 

to the computing resources of the Cloud for parallel processing. 

Each partition contains roughly fair amount of geometrically-

nearby spatial tuples. 

To understand the way at which our method replicates BSOs, 

consider the heuristic overview in Fig. 2. This figure represents 

the administrative neighbourhood divisions for part of the city 

of Milan in Italy. All objects (tuples) that belong to g12, g14 

and g22 will be replicated in partitions that host tuples from N1 

and N2. This is so because, geohash encoding is an 

approximation and by such representation, tuples with same 

geohash value may belong to different neighbourhoods. Such 

points need then to be replicated to bordering cells because at 

the time we do not know to which neighbourhood (polygon) the 

point belongs by simply looking at its geohash representation. 

B. Spatial Query Optimization in Main Memory Systems 

Query optimizers in the current state-of-art systems are not 

attuned to the shape of the processed spatial data, causing 

substantial amounts of data to be shuffled around by the 

underlying optimizers, thus deteriorating the benefits of 

parallelization. A spatially-attuned query optimizer seeks at 

selecting efficient query plan that minimizes the shuffling of 

data over the network. 

Density-based clustering algorithms cluster spatial objects by 

considering high-dense regions as clusters, whereas considering 

others as noise. Accounting for SDL preservation and BSOs 

minimization while applying those algorithms in Cloud is 

challenging.  

A well-performing Cloud-based density-based clustering 

algorithms is DBSCAN-MR [13] , which operates as follows. 

First, it partitions input data to worker nodes of Cloud 

deployment. This is followed by applying a local version of the 

operator instance of the plain DBSCAN for data in each worker 

node. It then combines local results into unified final clusters. 

An intrinsic challenge with parallelizing DBSCAN-MR is the 

need to replicate BSOs to overlapping cells (e.g., cells that result 

from overlaying the grid representation of the embedding space 

with approximate Minimum Bounding Rectangles (MBR)), 

thereafter a post-replication refinement stage is needed to 

discard extra points.  
We have implemented a retrofitted version of DBSCAN-MR 

over Spark’s Magellan which is not natively supported. Our 
retrofitted version exploits our SCAP partitioning scheme, 
where we apply SCAP as a frontstage for splitting data to 
achieve a lower latency during the application of the retrofitted 
DBSCAN-MR. For our method SCAP, we simply duplicate the 
BSOs that belong to overlapping geohashes. The size of the 
BSOs space then depends on two factors. The data skewness and 
the geohash precision (a multiple of 5). On the contrary, for the 
SASAP baseline from our previous work [7, 8] , the 
mathematical model that have been used for replicating BSOs 
was expensive despite at times leading to less replication. A 
tension then between some QoS goals is always present. Stated 
another way, less BSOs means a desirable higher Cloud 
computing resource utilization, but an undesirable high latency 
as the replication method used is expensive, while more BSOs 
but depending on a cheap replication method yields a lower 
resources utilization in bid for a highly desirable lower latency, 
which is the benefit we reap by applying SCAP. Since in this 
paper we are focusing on time-based QoS goals (e.g., lowering 
the latency), then SCAP is favorable. 

 

Fig. 2. Part of a heuristic geohash covering for part of the city of 
Milan in Italy. In the legend, N1 is the first neighbourhood while N2 

is the second.   g11 is the first geohash covering for N1, while g21 is 

the first geohash covering for N2 and so on. 

 

 

Fig. 1.  Spatial co-Locality-aware partitioner (SCAP) 



 

 

V. IMPLEMENTATION INSIGHTS 

To show how SCAP and the associated optimizers (forming 

together our system SpatialBPE) are adept in achieving time-

based QoS goals, we have built a standard-compliant prototype 

on top of Spark [3] . We have basically extended Spark’s 

Magellan, which is a spatial-aware library that is optimized on 

top of Spark. Spark cores offers an abstract module that allows 

the creation of custom partitioning methods. We have 

overloaded that module to implement our SCAP scheme. 

A. Deployment Settings and Benchmarking 

This section discusses deployment settings that we have 

selected to evaluate the ability of SCAP and the associated 

query optimizer. 

Dataset. For benchmarking, we use the NY City taxicab trips 

datasets 3 , from which we choose a cohort of around 150k 

points representing a portion of data captured through taxi rides 

for the first half of 2016. We have selected the green taxi trips 

that include fields registering pick-up/drop-off locations. The 

other dataset is a cohort of 150k spatial points collected during 

the ParticipAct project , which is a project that has been started 

at University of Bologna in Italy aiming at achieving the People 

as a Service (PaaS) vision, where people act as active collectors 

of data that can be exploited and applied to interesting scenarios 

such as DBSCAN. Every spatial point has a user locational data 

(in planar GPS coordinates longitude/latitude) in addition to 

timestamps pointing to the times of collection. 

Deployment and experimental settings. We run our system, 

SpatialBPE,  on a Microsoft Azure HDInsight Cluster hosting 

Apache Spark version 2.2.1. It consists of  6 NODES (2 Head + 

4 Worker) with 24 cores. Head (2 x D12 v2) nodes , and Worker 

(4 x D13 v2) nodes. Each head node operates on 4 cores with 28 

GB RAM and 200 GB Local SSD memory, and quantities are 

double those figures for worker nodes. 
Parameter settings. We have selected to intermix the 

tweakable parameters in a way that enables us to measure the 
capabilities of SCAP and its correlated optimizers in achieving 
a wide choice of qualities. I) Varying the DBSCAN-MR 
parameters values. We first profile the datasets by applying a 
kNN distance histogram method in order to select the values for 
epsilon and minPoints, which are the parameters required by 
DBSCAN-MR, where epsilon is the maximum distance of a 
point to be considered for a specific cluster. minPoints is the 

 
3 https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page  

minimum number of points that altogether form a cluster. From 
the histogram, the best epsilon/minPoints combination are those 
that fall on the so-called ‘knee’ of the graph. We have found that 
there are multiple applicable values, from which we choose the 
combinations of 0.09 epsilon, 200 minPoints, and the other 
combination is 0.15 epsilon and 300 minPoints. By this 
parametrization, we aim at measuring the ability of our methods 
in achieving low-latency against the baseline method. II) Fixing 
DBSCAN-MR parameter settings and varying the geohash 
precision. By this setting, we aim at measuring the ability of our 
method in striking a balance between the spatial partitioning 
goals, which then transfers an effect that is reflected on the QoS 
goals (e.g., latency, resource utilization). 

B. Performance Metrics 

We use the end-to-end latency for comparing a time-based QoS. 

Latency follows a low-is-better trend. Latency is the total time 

required for processing all tuples that arrive during a running  

session in an end-to-end fashion (i.e., passing through all the 

operators of a DAG operator graph), from the moment data is 

ingested by the system until results are served to the user.  

We also apply another performance metric that calculates the 

data size with BSOs. By this metric we aim at measuring the 

resource utilization QoS, considering that it is a tradeoff which 

collide with the lowering latency QoS goal.  

Furthermore, to quantify the gain of the geohash precision 

adaptation, we define and apply  

adapGain = (((BSO
30

 - BSO35) BSO30) . 100)⁄ % 

Where 𝐵𝑆𝑂30 is the number of BSOs resulted through the 

geohash precision 30, whereas 𝐵𝑆𝑂35 is the number of BSOs 

resulted through the geohash precision 35. 

C. Results and Discussion 

We have tested SCAP against SASAP by using the first 

parameter enumeration. As shown in figures 3 and 4, 

respectively, our retrofitted version of DBSCAN-MR over 

SCAP is adept in achieving QoS time-based goals (specifically 

a lower latency) better than the baseline with which we compare 

that alternatively exploits SASAP partitioning method from the 

literature. Notice how an increased number of bordering 

replicated points (i.e., BSOs) implies a near-linear similar-

pattern increase in running times of both implementations. This 

applies also for the case of value of epsilon that is equal to 0.09 

 

Fig. 3. Running times and number of BSOs of our retrofitted version 
of DBSCAN-MR over SCAP against SASAP-based version tested on 

NYC taxicab datasets. Parameters: eps 0.15, minPts 300, geohash 30. 
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Fig. 5. The effect of tweaking geohash precision on the number of 

BSOs generated by SCAP on NYC taxicab dataset. Parameters: eps 

0.15, minPts 300, geohash 35 
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Fig. 4. Running times and number of BSOs of our retrofitted version 

of DBSCAN-MR over SCAP against SASAP-based using the 

ParticipAct dataset. Parameters: eps 0.15, minPts 300, geohash 30. 

  

 

0

50

100

150

200

0

500

1000

1500

2000

2500

10 30 50 100

d
a

ta
 s

iz
e

 w
it

h
 B

S
O

s

T
h

o
u

s
a

n
d

s

ti
m

e
 (

s
e

c
o

n
d

s
)

data size (x 103 tuples) 

BSOs SCAP BSOs SASAP time SCAP time SASAP



 

 

and minPoints equals to 200. However, in both cases it 

negatively affects the running time of our new method SCAP 

version to a lesser extent as opposed to SASAP baseline 

counterpart.  

Another tunable parameter in our settings is the geohash 

precision, which then has a utility in determining the number of 

BSOs that will be marked for replication. Fig.  5 shows that 

changing the tweakable geohash from 30 to 35 precision yields 

less BSOs for SCAP. This is because a wider geohash precision 

implies a smaller size of the cells that this geohash order pass 

through, which then reduces the overlapping areas between 

bordering cells, thereby reducing the BSOs count. 

Fig.  6 shows that we obtain roughly 32% gain by 

changing the geohash precision. We sometimes term such gain 

as the design effect as it is carried over as a result achieved by 

applying the design of our SCAP scheme. 

VI. CONCLUSIONS AND FUTURE WORKS 

Research efforts in communication service provisioning are 

currently geared toward designing communication networks 

that serve as robust infrastructures for the management of huge 

amounts of data with QoS guarantees. Clouds are built with 

such design primitives being prioritized. However, at times, the 

way that parallel data processing frameworks act in such 

settings may deteriorate the benefits we reap by the elasticity 

provided by such infrastructures. To assist those efforts, we are 

tackling the problem from the perspective of optimizing the 

deployed data processing systems so that they synergistically 

achieve the goals envisaged by such infrastructures. A special 

attention in this paper has been given to the pivotal problem of 

spatial data partitioning in Cloud computing frameworks. 

Specifically, we focus on in-memory systems that need to 

process data in fast memory with parsimonious resources. We 

have designed a locality-preserving spatial partitioning scheme 

for quality spatial analytics in distributed main memory 

frameworks. Our method termed SCAP, basically focuses on 

spatial locality problem to help in minimizing the data shuffling 

around the network while processing costly proximity-alike 

queries. In this paper, we specifically focus on a costly density-

based clustering algorithm. As a future potential research 

frontier, we could offload a portion of the data partitioning to 

IoT devices near the edge. Thus, further assisting novel network 

designs in achieving high QoS. 
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Fig. 6. Adaptation gain we reap by tweaking geohash precision, from 
30 to 35 in this case. 
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