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Abstract—The exponential amount of geospatial data that 

has been accumulated in an accelerated pace has inevitably 

motivated the scientific community to examine novel parallel 

technologies for tuning the performance of spatial queries. 

Managing spatial data for an optimized query performance is 

particularly a challenging task. This is due to the growing 

complexity of geometric computations involved in querying 

spatial data, where traditional systems failed to beneficially 

expand. However, the use of large-scale and parallel-based 

computing infrastructures based on cost-effective commodity 

clusters and cloud computing environments introduces new 

management challenges to avoid bottlenecks such as overloading 

scarce computing resources, which may be caused by an 

unbalanced loading of parallel tasks. In this paper, we aim to fill 

those gaps by introducing a generic framework for optimizing 

the performance of big spatial data queries on top of Apache 

Spark. Our framework also supports advanced management 

functions including a unique self-adaptable load-balancing 

service to self-tune framework execution. Our experimental 

evaluation shows that our framework is scalable and efficient for 

querying massive amounts of real spatial datasets. 
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I.  INTRODUCTION  

Today’s proliferation of ubiquitous positioning devices and 
technologies has simplified the collection of spatial data at an 
exponential rate. Also, the large-scale spread of mobile 
devices, such as smartphones and sensor-enabled devices, has 
encouraged the participatory collection of a massive amount of 
geospatial data, specifically in the so-called Smart Cities [1]. 
Consequently, the demand for analyzing such big spatial data 
has become increasingly a necessity, to extract knowledge that 
facilitates better decision making, which is beneficial for 
diverse life fields. 

Advanced analysis techniques are essential to derive a 
useful knowledge from big data, which led to the emergence of 
several big data management and processing systems. Those 
are typically based on a functional-based programming 
paradigm called MapReduce [2]. The first open-source 
realization of MapReduce was Hadoop [3]. However, using 
Hadoop nearly for a decade, it was found that it has its 
limitations, which motivated the introduction of alternatives, 
among which one has soon became a benchmark in big data 
processing, the so-called Apache Spark [4]. Spark has 
introduced Resilient Distributed Datasets (RDDs) [5], as sets of 
objects partitioned among machines of a cluster. Various 
features of RDDs enabled Spark to outperform its 
predecessors. For example, RDDs are lazily evaluated, 

meaning that the execution of a transformation operation is 
delayed until an action operation is invoked on the same RDD, 
therefore avoiding storage and IO overheads, and thus 
optimizing overall performance. However, while Spark works 
nicely with big data of various fields, spatial data processing is 
intrinsically more complex and needs an integrated support for 
customized implementations. Therefore, Spark’s spatial 
extensions have been developed to simplify geospatial data 
processing. For example GeoSpark [6], which basically runs 
exactly as Spark, but with the awareness for geospatial data. 
Some other competitors are based on Hadoop like 
SpatialHadoop [7], and Hadoop-GIS [8]. 

The accelerated advancement of sensor-enabled data 
collection technologies and the high availability of cost-
effective commodity computers have enabled the capture of an 
extra tremendous amount of geospatial data, which is 
beneficial for various fields of scientific research. For example, 
smart city environments have emerged and became common in 
the last two decades, where the examination and analysis of 
data generated by participants enables solving problems related 
to the continuous population growth, aiming to provide citizens 
with useful and efficient services, and thus improving the 
quality of their lives. However, to realize this complex system, 
it is necessary to develop an efficient infrastructure to collect 
information in the urban context, which requires dividing tasks 
among participants in an effective way that ensures their 
willingness to participate. To achieve this, a clustering 
algorithm has to be utilized. However, this involves a complex 
querying for a huge amount of geospatial data in an efficient 
manner in terms of time and storage. Such queries often 
involve tens of millions of geospatial objects and expensive 
geometric calculations to be processed with an efficient 
response time. Due to their incapability to scale, traditional 
database management systems are no longer useful for 
querying such huge amount of spatial data [9]. Also, extensions 
like GeoSpark do not include an integrated support for 
clustering methods, or customizable modules for specific 
application requirements. Further, GeoSpark did not consider 
important issues like data load balancing in specific application 
scenarios. Hence, it is essential to add a top-layer that provides 
services for alleviating costly geometric computations and 
minimizing the overhead that may be caused by unbalanced 
data loads. 

To tackle the aforementioned problems, we have designed a 
framework for supporting distributed, scalable and self-
adaptable querying of big geospatial data. To the best of our 
knowledge, this is the first work that addresses the querying of 
big geospatial data using a framework that utilizes Spark, 



together with its geospatial extensions, aiming to efficiently 
minimize query response time. Our framework introduces a 
novel service layer on top of GeoSpark, which facilitates 
geospatial processing. For experimental purposes, we have 
used a real dataset. Running experiments on an Amazon’s EC2 
cloud shows that our framework has optimized the overall 
performance. 

II. BACKGROUND 

Systematic processing of big spatial data involves complex 

and repetitive geometric computations, where traditional 

systems face bottlenecks. For example, clustering participants 

in smart cities Mobile CrowdSensing (MCS) campaigns offers 

an opportunity to devise solutions for optimized participant’s 

selection in a process that typically involves complex data 

management, querying and clustering [10]. To answer these 

new needs, some seminal geospatial extensions have recently 

been introduced, aiming to integrate with current big data 

processing systems. 

A. Spark and Geospatial Extensions 

Apache Spark [4] is an open-source realization for the 
MapReduce framework that aims to process huge amount of 
data efficiently in a parallel fashion. It is an efficient general-
purpose solution for processing disk-resident, memory-resident 
and big data streams (micro-batches). The core programming 
abstractions of Spark are RDDs, which are groups of objects 
partitioned across multiple computing resources for parallel 
manipulation. Spark’s jobs include constructing new RDDs, 
RDD’s transformation, or calculating a result by invoking a 
function on RDDs [11]. 

Spark provides high-level APIs for various programming 
languages such as Java, Scala, and Python. It allows 
programmers to develop a complex data pipeline system, 
parallelizing multiple statement’s processing flows through the 
Directed Acyclic Graph (DAG) pattern. Also, it supports 
sharing of in-memory type information through the DAG, so 
that multiple processes can run efficiently on shared data. It has 
been developed to overcome major limitations of the Hadoop 
MapReduce implementation. For example, the inefficiency of 
processing iterative jobs in Hadoop, as many common machine 
learning algorithms apply functions repeatedly on the same 
dataset for optimizing one or more parameters, while each 
iteration can be expressed as a MapReduce process, each time 
the job executes, it must reload the data from the disk, causing 
a significant loss in performance. 

Even though Spark outperforms its predecessors for 
processing big data, it is still not optimized for specific 
application scenarios, like geospatial data analysis, and that led 
to the emergence of specific extensions built on top of Spark. 
GeoSpark [6] is an open-source framework, designed to be able 
to process large amounts of spatial data on a large-scale. It 
extends the classical Spark’s RDD in the form of SpatialRDD 
(SRDD) and partitions their elements across multiple 
machines, through introducing concepts of space operations in 
parallel. Those are geometric operations that obey the 
recognized Open Geospatial Consortium (OGC) standards. 
GeoSpark also extends the SRDD layer to perform spatial 

queries, as the Type Range, KNN and Join, on a set of large-
scale geospatial data.  

GeoSpark consists of three layers, namely; i) Apache 
Spark, ii) spatial RDD and iii) spatial query processing layers, 
from the bottom to the top layer. The bottom layer is 
responsible for performing basic Spark functions, in addition to 
the recovery and storage of persistent data (e.g. Local disk or 
HDFS). The middle layer contains four new types of RDDs; 
those are; PointRDD, RectangleRDD, PolygonRDD and 
CircleRDD, where for each of them there is a dedicated library 
of geometric operations. This layer also uses spatial indexes 
such as Quad-Tree and R-Tree. The top layer is the one that 
deals with executing spatial queries over large scale datasets. In 
particular, after creating an SRDD, the user can invoke query 
operations directly, through this layer, where GeoSpark 
processes query requests and returns results to user. 

GeoSpark has been designed to be a generic framework for 
processing big spatial datasets. However, many optimization 
issues are still to be solved in this context. For example, the 
load-balancing, which can be defined as a problem where 
various nodes of a parallel-processing system might be 
assigned data loads in an unbalanced manner, causing an 
overall response-time lateness. Another issue is that every 
spatial management system collects data in a format that may 
significantly differs from others, thus preparation of the data 
before sending it to the computing nodes is indispensable. 
However, GeoSpark did not provide services that can be 
specialized for various spatial datasets preparation’s scenarios. 
Moreover, GeoSpark did not encapsulate a full-fledge library 
of spatial data querying services. For example, density-based 
clustering is an interesting method for clustering data in various 
fields, including geospatial processing applications. Simply 
put, in this method, clusters are those regions which have 
densities higher than surrounding areas, where latters are 
considered noise or border points that separate clusters. 
However, GeoSpark does not contain customizable querying 
services that might be utilized for an efficient application of 
density-based algorithms on spatial datasets. To address these 
issues, it is essential to build a framework that extends Spark 
and GeoSpark, with the principle goal of optimizing parallel 
big spatial data querying and analysis. 

The next subsection shows potential queries that can be 
used by any algorithm for processing big spatial data. 

B. Spatial Query Types and Associated Challenges 

A support for various spatial query types is essential to 
optimize the running time of calculation-intensive algorithms. 
Spatial queries include, selection, join, proximity detection 
and pattern discovery. Selection queries can involve filtering 
of some spatial objects based on predefined constraints. Join 
queries, like intersection and union, discover interrelations 
between subsets from spatial objects. Proximity queries 
detects proximity among spatial objects that forms a point of 
interest. For example, MCS’s participants who are in a spatial 
proximity normally construct groups near interesting locations 
of a city, where they share correlated interests. An example 
query may try to find participant’s density distribution for 



various locations in a city. Pattern discovery means identifying 
patterns that significantly differ from others. 

Nowadays, traditional systems failed to respond to the 
needs for querying unprecedented increasing amounts of 
spatial data, and the pressing needs for minimizing query 
response time. As a consequence, the community shifted to 
parallelizing spatial queries by leveraging the MapReduce 
approach, aiming to optimally enhance query response time. 

Moreover, algorithms for processing spatial data can 
involve one or many queries of various types. For example, a 
clustering algorithm may employ selection, proximity and join 
queries. Based on this fact, with the addition to the fact that 
such algorithms normally employ repetitive structures, it is 
obvious that processing big spatial data is tremendously 
expensive in such a way that there is always a space for 
further enhancements and optimizations. To put it in a precise 
way, the application of big spatial data processing algorithms 
differs from batch processing, when applying them in a 
distributed manner. As those algorithms need to partition 
datasets across various nodes in a distributed processing 
environment, load-balancing is an optimization problem, 
where the aim is to distribute datasets across various 
computing resources in a way which guarantees that all nodes 
will nearly complete processing at the same time, thus 
avoiding an unbalanced loading, and therefore decreasing the 
response time, increasing the throughput, and enhancing the 
overall performance. Our work falls into this context, 
specifically designing a framework that incorporates various 
mechanisms for optimizing spatial query performance. In the 
next section, we elaborately describe our framework with a 
comprehensive real scenario.  

III. FRAMEWORK ARCHITECTURE 

A. Architectural Overview 

Spatial datasets are heavily skewed, which means that the 
density of object’s in some regions of a geographical space is 
higher than that of boundaries, thus one of the challenging 
tasks is to properly balance loads when distributing spatial data 
across multiple nodes for parallel querying. Further, parallel 
spatial queries incur extra overheads caused by the need to 
repeatedly exchange data among processing nodes. 

In this paper, we have designed a framework for supporting 
costly big spatial data queries, with the awareness for density-
based spatial data partitioning, especially in heavily skewed 
datasets. Also, a special treatment has been introduced for 
facilitating an efficient data load balancing. The main objective 
of our framework is to provide a customizable service for load 
balancing across computing resources, which is mainly based 
on the distribution density of spatial objects. 

Our framework integrates and significantly extends Spark 
and GeoSpark, and consists of the layered architecture depicted 
in Figure 1. At the lowest layer resides Spark, providing tools 
for data discovery, RDD’s creation, and standard operations to 
process them, including many different primitives from 
MapReduce approach. At the middle layer, there is GeoSpark, 
providing a fully integrated support with the underlying 
framework, and offering advanced processing methods by 

defining the generic data acquired by Spark as geospatial data, 
through the Point class defined herein, and the resulting 
PointRDD container. In addition, at this stage there are also 
modules for data mining analysis such as the 
SpatialKNNQuery. At the top layer, there is our novel service 
layer, consisting of many modules as better explained in the 
following. 

Services include geospatial dataset preparation, self-
adaptation, and querying. First, some spatial datasets contain 
objects in a format that differ from those acceptable by 
GeoSpark. Preparation means applying customizable modules 
for reformatting input dataset so that it complies with specific 
application requirements and GeoSpark input’s constraints. 

 Self-adaptation service also exists in this layer, which 
enables adaptive partitioning of spatial datasets, with the final 
goal to minimize the processing time.  To be more specific, for 
every session of an application, a self-tuning module developed 
by us will be utilized to optimize division factors for 
subsequent sessions. This means an adaptive partitioning 
mechanism for subsequent sessions, which will notably balance 
loads among participating nodes, hence optimizing usage of 
node’s resources to avoid overloading specific nodes on behalf 
of others. In other words, a typical situation in the execution of 
a MapReduce task is that an unbalanced distribution of data 
might cause a processing delay at one of the nodes in a cloud 
environment, and that in its turn will cause a delay for the 
whole process, despite that other nodes might have already 
completed their parts, so a self-adaptive service is required to 
optimize the whole process. Finally, querying comprises the 
interconnection between the developer and lower layers, where 
spatial queries will be forwarded to GeoSpark, while other 
queries will be sent to lower layer directly. This service also 
includes a module to translate spatial queries into 
corresponding GeoSpark’s jobs. 

In the next subsection, we describe the application of our 
framework for spatial query optimization in a real scenario. 

B. Example Application Scenario 

To test the capabilities of our framework in supporting the 
querying and analysis of geospatial data-intensive sets, we 
have applied it to a real scenario.  ParticipAct is a project of 
the University of Bologna, which aims to study the potential 
cooperation between citizens, leveraging smartphones as a 
tool for interaction and interconnection [12]. The project had 
achieved a large-scale spatial data collection using 
smartphone’s sensors. Yet, only few experimental efforts have 
been made to address the problem of assigning MCS data 
collection campaigns to users in real scenarios [10]. This 
problem can be defined as identifying potential participants 
for each task, hence increasing the probability of a willingness 
of selected users in participation. One method for achieving 
this is to employ an efficient clustering algorithm that can 
cluster users based on historical records captured earlier. To 
be more specific, clustering here signifies the grouping of 
users on a location-based style, based for example on the 
density of their distribution. However, with a huge amount of 
geospatial data to be experimented, applying traditional 
clustering methods in a batch-processing and local style is not 



feasible. Consequently, tailoring a clustering method so that it 
works in compliance with the MapReduce fashion is 
necessary. Density-Based Spatial Clustering of Applications 
with Noise (DBSCAN) [13] is an efficient clustering 
algorithm that is based on identifying clusters as high density 
regions, separated by areas with a low density, referred to as a 
noise. However, the performance of DBSCAN degrades 
dramatically with an increasing large source datasets, because 
of the execution complexity derived from repeated iterations 
on the initial dataset. 

As a solution for the aforementioned traditional 
DBSCAN’s limitation, [14] proposed a variation called 
DBSCAN-MapReduce (DBSCAN-MR), which aims to solve 
the scalability problem of the traditional technique for 
scenarios that contain increasing number of input elements, 
subdividing the initial dataset on multiple nodes, and 
executing on each of them the classical DBSCAN algorithm. 
In this way, the complexity of the problem is reduced, since it 
is no longer the complexity of running on the entire dataset, 
but only of a single portion, where each partition is processed 
within MapReduce operations. However, DBSCAN-MR has 
not been designed with the goal of optimally solving the load-
balancing problem. Add to this the fact that it is a generic 
application for the MapReduce, hence preparation of spatial 
datasets has not been considered. For these reasons, we have 
specialized three services from our top layer: i) preparation as 
filtering service; ii) querying service that optimizes several 
spatial query types and transforms queries into GeoSpark’s, 
and sequentially, Spark’s jobs; and iii) self-adaptation service.  

The filtering service reads input data from a geospatial 
dataset and utilizes GeoSpark to construct a PointRDD. Since 
not all points satisfy requirements of our scenario, filters that 
operate on all parameters of each point have been provided in 
the service layer.  First, a user filter allows to filter the input 
database by selecting only points related to a single user or a 
set of users. Then, an accuracy filter enables threshold values 
of accuracy that can be set so that only points that satisfy will 
be considered.  Moreover, a date filter allows to define start 

date and end date within which to consider the input elements, 
making the analysis restricted to a specific period. Finally, a 
motion filter supports filtering the items that are in motion, by 
eliminating consecutive elements that are recorded for the 
same user. Elements that meet all desired constraints are saved 
in an RDD; we use a module called ParticipActPoint, 
specifically designed for this purpose. Thereafter, GeoSpark’s 
Point class will be used for simplifying the structure of each 
element keeping only the longitude and latitude. 

Focusing on the second querying service, it realizes the 
DBSCAN-MR algorithm that in its turn incorporates various 
types of spatial queries. First, the partitioning phase 
breakdowns internal elements of PointRDD on different 

nodes in a cluster or cloud, where every node clusters a local 
subset of data. We have defined a ManagePartitions 

module with two different methods of data partitioning; 
prepareVertical, which subdivides the RDD to form 

parallel partitions, and the second one makes a grid 
partitioning. Both methods require an RDD input of points, 
and a parameter for the operation of the algorithm DBSCAN, 
namely Eps used later to determine the maximum distance for 
the creation of the cluster, and in particular, to decide the 
width of the edges to replicate (2Eps). In the subsequent 
mapping phase, classical DBSCAN is applied to local data of 
each node. Once the algorithm examined all points in all 
nodes, the output of the mapping returns a new RDD, this time 
with the key ID of the point and the CompletePoint (a 

module we defined to reformat points). Finally, the Reduce 

function groups together all elements that share the same ID 
replicated on multiple partitions, which determine the union of 
temporary clusters located in different partitions that will be 
merged in a later stage. Results from the reduce phase are 
merged to find out the cluster’s global structure. In the 
Relabeling phase, each core local point that belongs to a 

global cluster is relabeled to identify the resulting cluster. We 
have used Spark’s broadcast variable for this purpose.  

Finally, the self-adaptation service is applied to enforce the 
load balancing of data across the computing nodes.  At each 
attempt, a new configuration of cuts that balances the timing 
within partitions is automatically calculated. In particular, this 
will define new cutting factors for subsequent sessions of the 
algorithm, thus balancing the local execution time in all 
partitions, therefore reducing the overall time and optimizing 
the overall performance of the algorithm. 

IV. EXPERIMENTAL RESULTS 

Moving from boards to the reality, to analyze the 
performance of our framework, we have tested the application 
of the DBSCAN-MR utilizing service from the top-layer of our 
framework, with a focus on self-adaptation, and using the 
scenario discussed earlier. By doing this, we test the integration 
of our added features with those offered by GeoSpark. 

Our experimental setup utilized Amazon AWS cloud’s 
computing services, specifically Amazon’s EC2 service, 
where 5 nodes have been used for deployment, one master and 
four slaves. On each node, Spark 1.6.2 was installed, and 
Ganglia 3.7.2 was used for performance analysis. Our input 
database consisted of 250,000 spatial objects collected through 

 

 
Fig. 1.  Framework Architecture. 



the ParticipAct project [12]. Each point in the ParticipAct 
database includes the following attributes: i) the data_id 
parameter is a unique sequential integer for each record in the 
database, it is the id of the point in the ParticipAct database; ii) 
two timestamps, received_timestamp and sample_timestamp, 
the first marks the time when the point has been received from 
ParticipAct platform, while the second represents the time 
when the data was actually sampled; iii) the accuracy 
represents the degree of accuracy, and the reliability of the 
information received; iv) latitude and longitude that represent 
the coordinates of the point; v) he provider parameter that can 
be of three types: gps, network or fused, depending on the type 
of detection instrument used to locate the spatial object; and 
vi) the user_id parameter, which represents a single user.  

We performed ten experimental sessions on the same 
dataset, keeping the parameters of DBSCAN-MR algorithm 
fixed, but automatically changing the cut factors with each 
session, aiming to optimize the size of partitions, and therefore 
the position of latitude’s edges, and consequently speeding up 
the entire process of determining the resulting cluster. This 
process was carried out automatically by our support through 
partition configurations provided by the self-adaptation service 
that stopped after ten iterations because there was no further 
major benefit (the overall time improvement was below 1%) in 
further adjusting the configuration cuts. 

Particularly, Fig. 2 and Fig. 3 show the percentage of CPU 
usage at the four slaves for the whole experiment duration for 
the first (Fig. 2) and tenth (Fig. 3) execution iterations. It is 
evident that the total time has been optimized in terms of the 
termination time on each partition; in fact, after ten iterations 
each partition completed its local execution of the classic 
DBSCAN with nearly a synchronized time comparing to 
others, thus reducing the total running time of the DBSCAN-
MR. 

Delving into finer details, Fig. 2 shows the first (non-
optimized) iteration where the total length is 50.1 minutes. 
Each line represents a node and it is possible to note the end of 
execution of each of them. In particular, the first three ended 
execution early, meaning that in the fourth node there is a 
higher concentration of the cluster. Initial configuration of the 

cuts, chosen as default and evenly distributed values are, 
respectively, 0.25, 0.50, and 0.75.  

Fig. 3, instead, shows the tenth iteration, and thanks to our 
automatic management operations the total time length has 
more than halved to 22.7 minutes. This is because our self-
adaptation service successfully balanced the data distribution in 
order to have the execution time of each partition 
approximately similar. The resulting final configurations of the 
cuts are 0.27, 0.43 and 0.52. 

Finally, Fig. 4 shows the timing in relation to three 
execution iterations: the first, the fifth, and the tenth. As 
shown, the execution time continuously improves and reduces 
from 50.1 minutes (first iteration) to 22.7 minutes (tenth 
iteration), obtaining a percentage of speed-up improvement 
equivalent to 54.7%. 

V. RELATED WORKS 

Many Hadoop-based frameworks can be tackled in the 
literature,  [15] presented HadoopDB, which is an integration 
between Hadoop and Postgres Spatial, aiming to facilitate 
computations on huge spatial data. However, their system 
employs Hadoop native libraries for processing geospatial data 
extracted from a Postgres spatial database, hence a big effort is 
required for executing spatial geometric computations. In 
addition, they did not provide services for load-balancing, thus 
efficiency degrades at execution time. 

 
Fig. 2.  First Execution of DBSCAN-MR. 

 
Fig. 4.  Query Performance Optimization using our Framework. 

 
Fig. 3.  Tenth Execution of DBSCAN-MR. 



Also, [16] implemented a VegaGiStore system on top of 
Hadoop, aiming to support various concurrent spatial queries 
for real-life applications. However, their spatial data 
partitioning method did not consider dependable load-
balancing, which leads to significant loss of efficiency in case 
of applying computation-intensive clustering algorithms. 

A method has been developed by [17] to efficiently process 
big spatial data queries by introducing a hierarchical spatial 
index, that is implemented on top of HBase. Also, it provides 
prefix matching filtering service, to filter spatial objects based 
on some constraints. However, their implementation did not 
consider the possible incorporation of other services, so it is not 
a general-purpose framework and cannot be adapted to be 
incorporated with emerging big data processing systems like 
Spark. 

A geospatial data processing framework was designed by 
[18], aiming to better  manage and process spatial data in a 
distributed fashion with an awareness for extensibility and 
adaptability. They based the framework on Hadoop, with the 
goal of an effortless adaptation of existing spatial algorithms to 
the distributed paradigm. However, it does not consider a self-
adaptation service in the top layer. Also, it is based on Hadoop, 
thus extending it to handle online spatial data streams will 
require enormous efforts. 

Nowadays, shelves have become increasingly saturated 
with geospatial query processing engines, thus choosing the 
correct solution become harder. Yet, most systems and 
frameworks of the literature have considered only Hadoop. As 
far as we know, there is no fully optimized solution that is built 
on top of ◌ٍ◌ٍ◌ٍSpark and its spatial extensions, that aims to 
optimize geospatial query processing with a prioritization for 
load balancing. 

VI. CONCLUSIONS AND FUTURE WORK 

The ever-increasing diffusion of sensor-enabled portable 
devices enabled the collection of an unprecedented huge 
amount of geospatial data, where analysis has become essential 
for knowledge discovery. However, traditional database 
processing systems are unable to analyze such massive amount 
of data reliably. Also, despite that big data processing systems 
appeared like Hadoop and Spark, they do not provide specific 
support for spatial data processing, which, in turns, led to the 
appearance of extensions like GeoSpark. However, Geospark 
does not provide a full-fledged top layer service, requiring the 
developer to spend more efforts in the integration with 
GeoSpark while executing complex query-intensive 
algorithms. In this paper, we have introduced a framework for 
efficiently querying and analyzing big geospatial data, which 
was plugged on top of GeoSpark, with a motivation to optimize 
the performance. Several experiments using real spatial data on 
a 5-nodes Amazon’s EC2 cloud have shown a unique 
performance. 

In the future, we envision a contribution that incorporates 
more services to the top layer of our framework. Those may 
include, other types of queries, machine learning and data 
mining services with awareness for geospatial analysis. 
Another research direction is to provide services that simplify 
developer’s interaction with the top layer, by providing a full-

fledged native library of services that are customizable for 
various application scenarios. Finally, there are many 
application scenarios nowadays that require online streams of 
spatial data to be analyzed on-the-fly. In this paper, we have 
only considered offline disk-resident datasets, but another 
promising research avenue is to adapt this framework so that it 
applies to online geospatial data streams. 
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