
Efficient Spark-Based Framework for

Big Geospatial Data Query Processing and Analysis

Isam Mashhour Aljawarneh, Paolo Bellavista, Antonio Corradi, Rebecca Montanari, Luca Foschini, Andrea Zanotti

University of Bologna, Italy,

{isam.aljawarneh3, paolo.bellavista, antonio.corradi, rebecca.montanari, luca.foschini}@unibo.it, andrea.zanotti9@studio.unibo.it

Abstract—The exponential amount of geospatial data that

has been accumulated in an accelerated pace has inevitably

motivated the scientific community to examine novel parallel

technologies for tuning the performance of spatial queries.

Managing spatial data for an optimized query performance is

particularly a challenging task. This is due to the growing

complexity of geometric computations involved in querying

spatial data, where traditional systems failed to beneficially

expand. However, the use of large-scale and parallel-based

computing infrastructures based on cost-effective commodity

clusters and cloud computing environments introduces new

management challenges to avoid bottlenecks such as overloading

scarce computing resources, which may be caused by an

unbalanced loading of parallel tasks. In this paper, we aim to fill

those gaps by introducing a generic framework for optimizing

the performance of big spatial data queries on top of Apache

Spark. Our framework also supports advanced management

functions including a unique self-adaptable load-balancing

service to self-tune framework execution. Our experimental

evaluation shows that our framework is scalable and efficient for

querying massive amounts of real spatial datasets.

Keywords—querying spatial data; MapReduce; big data; spark

I. INTRODUCTION

Today’s proliferation of ubiquitous positioning devices and
technologies has simplified the collection of spatial data at an
exponential rate. Also, the large-scale spread of mobile
devices, such as smartphones and sensor-enabled devices, has
encouraged the participatory collection of a massive amount of
geospatial data, specifically in the so-called Smart Cities [1].
Consequently, the demand for analyzing such big spatial data
has become increasingly a necessity, to extract knowledge that
facilitates better decision making, which is beneficial for
diverse life fields.

Advanced analysis techniques are essential to derive a
useful knowledge from big data, which led to the emergence of
several big data management and processing systems. Those
are typically based on a functional-based programming
paradigm called MapReduce [2]. The first open-source
realization of MapReduce was Hadoop [3]. However, using
Hadoop nearly for a decade, it was found that it has its
limitations, which motivated the introduction of alternatives,
among which one has soon became a benchmark in big data
processing, the so-called Apache Spark [4]. Spark has
introduced Resilient Distributed Datasets (RDDs) [5], as sets of
objects partitioned among machines of a cluster. Various
features of RDDs enabled Spark to outperform its
predecessors. For example, RDDs are lazily evaluated,

meaning that the execution of a transformation operation is
delayed until an action operation is invoked on the same RDD,
therefore avoiding storage and IO overheads, and thus
optimizing overall performance. However, while Spark works
nicely with big data of various fields, spatial data processing is
intrinsically more complex and needs an integrated support for
customized implementations. Therefore, Spark’s spatial
extensions have been developed to simplify geospatial data
processing. For example GeoSpark [6], which basically runs
exactly as Spark, but with the awareness for geospatial data.
Some other competitors are based on Hadoop like
SpatialHadoop [7], and Hadoop-GIS [8].

The accelerated advancement of sensor-enabled data
collection technologies and the high availability of cost-
effective commodity computers have enabled the capture of an
extra tremendous amount of geospatial data, which is
beneficial for various fields of scientific research. For example,
smart city environments have emerged and became common in
the last two decades, where the examination and analysis of
data generated by participants enables solving problems related
to the continuous population growth, aiming to provide citizens
with useful and efficient services, and thus improving the
quality of their lives. However, to realize this complex system,
it is necessary to develop an efficient infrastructure to collect
information in the urban context, which requires dividing tasks
among participants in an effective way that ensures their
willingness to participate. To achieve this, a clustering
algorithm has to be utilized. However, this involves a complex
querying for a huge amount of geospatial data in an efficient
manner in terms of time and storage. Such queries often
involve tens of millions of geospatial objects and expensive
geometric calculations to be processed with an efficient
response time. Due to their incapability to scale, traditional
database management systems are no longer useful for
querying such huge amount of spatial data [9]. Also, extensions
like GeoSpark do not include an integrated support for
clustering methods, or customizable modules for specific
application requirements. Further, GeoSpark did not consider
important issues like data load balancing in specific application
scenarios. Hence, it is essential to add a top-layer that provides
services for alleviating costly geometric computations and
minimizing the overhead that may be caused by unbalanced
data loads.

To tackle the aforementioned problems, we have designed a
framework for supporting distributed, scalable and self-
adaptable querying of big geospatial data. To the best of our
knowledge, this is the first work that addresses the querying of
big geospatial data using a framework that utilizes Spark,

together with its geospatial extensions, aiming to efficiently
minimize query response time. Our framework introduces a
novel service layer on top of GeoSpark, which facilitates
geospatial processing. For experimental purposes, we have
used a real dataset. Running experiments on an Amazon’s EC2
cloud shows that our framework has optimized the overall
performance.

II. BACKGROUND

Systematic processing of big spatial data involves complex

and repetitive geometric computations, where traditional

systems face bottlenecks. For example, clustering participants

in smart cities Mobile CrowdSensing (MCS) campaigns offers

an opportunity to devise solutions for optimized participant’s

selection in a process that typically involves complex data

management, querying and clustering [10]. To answer these

new needs, some seminal geospatial extensions have recently

been introduced, aiming to integrate with current big data

processing systems.

A. Spark and Geospatial Extensions

Apache Spark [4] is an open-source realization for the
MapReduce framework that aims to process huge amount of
data efficiently in a parallel fashion. It is an efficient general-
purpose solution for processing disk-resident, memory-resident
and big data streams (micro-batches). The core programming
abstractions of Spark are RDDs, which are groups of objects
partitioned across multiple computing resources for parallel
manipulation. Spark’s jobs include constructing new RDDs,
RDD’s transformation, or calculating a result by invoking a
function on RDDs [11].

Spark provides high-level APIs for various programming
languages such as Java, Scala, and Python. It allows
programmers to develop a complex data pipeline system,
parallelizing multiple statement’s processing flows through the
Directed Acyclic Graph (DAG) pattern. Also, it supports
sharing of in-memory type information through the DAG, so
that multiple processes can run efficiently on shared data. It has
been developed to overcome major limitations of the Hadoop
MapReduce implementation. For example, the inefficiency of
processing iterative jobs in Hadoop, as many common machine
learning algorithms apply functions repeatedly on the same
dataset for optimizing one or more parameters, while each
iteration can be expressed as a MapReduce process, each time
the job executes, it must reload the data from the disk, causing
a significant loss in performance.

Even though Spark outperforms its predecessors for
processing big data, it is still not optimized for specific
application scenarios, like geospatial data analysis, and that led
to the emergence of specific extensions built on top of Spark.
GeoSpark [6] is an open-source framework, designed to be able
to process large amounts of spatial data on a large-scale. It
extends the classical Spark’s RDD in the form of SpatialRDD
(SRDD) and partitions their elements across multiple
machines, through introducing concepts of space operations in
parallel. Those are geometric operations that obey the
recognized Open Geospatial Consortium (OGC) standards.
GeoSpark also extends the SRDD layer to perform spatial

queries, as the Type Range, KNN and Join, on a set of large-
scale geospatial data.

GeoSpark consists of three layers, namely; i) Apache
Spark, ii) spatial RDD and iii) spatial query processing layers,
from the bottom to the top layer. The bottom layer is
responsible for performing basic Spark functions, in addition to
the recovery and storage of persistent data (e.g. Local disk or
HDFS). The middle layer contains four new types of RDDs;
those are; PointRDD, RectangleRDD, PolygonRDD and
CircleRDD, where for each of them there is a dedicated library
of geometric operations. This layer also uses spatial indexes
such as Quad-Tree and R-Tree. The top layer is the one that
deals with executing spatial queries over large scale datasets. In
particular, after creating an SRDD, the user can invoke query
operations directly, through this layer, where GeoSpark
processes query requests and returns results to user.

GeoSpark has been designed to be a generic framework for
processing big spatial datasets. However, many optimization
issues are still to be solved in this context. For example, the
load-balancing, which can be defined as a problem where
various nodes of a parallel-processing system might be
assigned data loads in an unbalanced manner, causing an
overall response-time lateness. Another issue is that every
spatial management system collects data in a format that may
significantly differs from others, thus preparation of the data
before sending it to the computing nodes is indispensable.
However, GeoSpark did not provide services that can be
specialized for various spatial datasets preparation’s scenarios.
Moreover, GeoSpark did not encapsulate a full-fledge library
of spatial data querying services. For example, density-based
clustering is an interesting method for clustering data in various
fields, including geospatial processing applications. Simply
put, in this method, clusters are those regions which have
densities higher than surrounding areas, where latters are
considered noise or border points that separate clusters.
However, GeoSpark does not contain customizable querying
services that might be utilized for an efficient application of
density-based algorithms on spatial datasets. To address these
issues, it is essential to build a framework that extends Spark
and GeoSpark, with the principle goal of optimizing parallel
big spatial data querying and analysis.

The next subsection shows potential queries that can be
used by any algorithm for processing big spatial data.

B. Spatial Query Types and Associated Challenges

A support for various spatial query types is essential to
optimize the running time of calculation-intensive algorithms.
Spatial queries include, selection, join, proximity detection
and pattern discovery. Selection queries can involve filtering
of some spatial objects based on predefined constraints. Join
queries, like intersection and union, discover interrelations
between subsets from spatial objects. Proximity queries
detects proximity among spatial objects that forms a point of
interest. For example, MCS’s participants who are in a spatial
proximity normally construct groups near interesting locations
of a city, where they share correlated interests. An example
query may try to find participant’s density distribution for

various locations in a city. Pattern discovery means identifying
patterns that significantly differ from others.

Nowadays, traditional systems failed to respond to the
needs for querying unprecedented increasing amounts of
spatial data, and the pressing needs for minimizing query
response time. As a consequence, the community shifted to
parallelizing spatial queries by leveraging the MapReduce
approach, aiming to optimally enhance query response time.

Moreover, algorithms for processing spatial data can
involve one or many queries of various types. For example, a
clustering algorithm may employ selection, proximity and join
queries. Based on this fact, with the addition to the fact that
such algorithms normally employ repetitive structures, it is
obvious that processing big spatial data is tremendously
expensive in such a way that there is always a space for
further enhancements and optimizations. To put it in a precise
way, the application of big spatial data processing algorithms
differs from batch processing, when applying them in a
distributed manner. As those algorithms need to partition
datasets across various nodes in a distributed processing
environment, load-balancing is an optimization problem,
where the aim is to distribute datasets across various
computing resources in a way which guarantees that all nodes
will nearly complete processing at the same time, thus
avoiding an unbalanced loading, and therefore decreasing the
response time, increasing the throughput, and enhancing the
overall performance. Our work falls into this context,
specifically designing a framework that incorporates various
mechanisms for optimizing spatial query performance. In the
next section, we elaborately describe our framework with a
comprehensive real scenario.

III. FRAMEWORK ARCHITECTURE

A. Architectural Overview

Spatial datasets are heavily skewed, which means that the
density of object’s in some regions of a geographical space is
higher than that of boundaries, thus one of the challenging
tasks is to properly balance loads when distributing spatial data
across multiple nodes for parallel querying. Further, parallel
spatial queries incur extra overheads caused by the need to
repeatedly exchange data among processing nodes.

In this paper, we have designed a framework for supporting
costly big spatial data queries, with the awareness for density-
based spatial data partitioning, especially in heavily skewed
datasets. Also, a special treatment has been introduced for
facilitating an efficient data load balancing. The main objective
of our framework is to provide a customizable service for load
balancing across computing resources, which is mainly based
on the distribution density of spatial objects.

Our framework integrates and significantly extends Spark
and GeoSpark, and consists of the layered architecture depicted
in Figure 1. At the lowest layer resides Spark, providing tools
for data discovery, RDD’s creation, and standard operations to
process them, including many different primitives from
MapReduce approach. At the middle layer, there is GeoSpark,
providing a fully integrated support with the underlying
framework, and offering advanced processing methods by

defining the generic data acquired by Spark as geospatial data,
through the Point class defined herein, and the resulting
PointRDD container. In addition, at this stage there are also
modules for data mining analysis such as the
SpatialKNNQuery. At the top layer, there is our novel service
layer, consisting of many modules as better explained in the
following.

Services include geospatial dataset preparation, self-
adaptation, and querying. First, some spatial datasets contain
objects in a format that differ from those acceptable by
GeoSpark. Preparation means applying customizable modules
for reformatting input dataset so that it complies with specific
application requirements and GeoSpark input’s constraints.

 Self-adaptation service also exists in this layer, which
enables adaptive partitioning of spatial datasets, with the final
goal to minimize the processing time. To be more specific, for
every session of an application, a self-tuning module developed
by us will be utilized to optimize division factors for
subsequent sessions. This means an adaptive partitioning
mechanism for subsequent sessions, which will notably balance
loads among participating nodes, hence optimizing usage of
node’s resources to avoid overloading specific nodes on behalf
of others. In other words, a typical situation in the execution of
a MapReduce task is that an unbalanced distribution of data
might cause a processing delay at one of the nodes in a cloud
environment, and that in its turn will cause a delay for the
whole process, despite that other nodes might have already
completed their parts, so a self-adaptive service is required to
optimize the whole process. Finally, querying comprises the
interconnection between the developer and lower layers, where
spatial queries will be forwarded to GeoSpark, while other
queries will be sent to lower layer directly. This service also
includes a module to translate spatial queries into
corresponding GeoSpark’s jobs.

In the next subsection, we describe the application of our
framework for spatial query optimization in a real scenario.

B. Example Application Scenario

To test the capabilities of our framework in supporting the
querying and analysis of geospatial data-intensive sets, we
have applied it to a real scenario. ParticipAct is a project of
the University of Bologna, which aims to study the potential
cooperation between citizens, leveraging smartphones as a
tool for interaction and interconnection [12]. The project had
achieved a large-scale spatial data collection using
smartphone’s sensors. Yet, only few experimental efforts have
been made to address the problem of assigning MCS data
collection campaigns to users in real scenarios [10]. This
problem can be defined as identifying potential participants
for each task, hence increasing the probability of a willingness
of selected users in participation. One method for achieving
this is to employ an efficient clustering algorithm that can
cluster users based on historical records captured earlier. To
be more specific, clustering here signifies the grouping of
users on a location-based style, based for example on the
density of their distribution. However, with a huge amount of
geospatial data to be experimented, applying traditional
clustering methods in a batch-processing and local style is not

feasible. Consequently, tailoring a clustering method so that it
works in compliance with the MapReduce fashion is
necessary. Density-Based Spatial Clustering of Applications
with Noise (DBSCAN) [13] is an efficient clustering
algorithm that is based on identifying clusters as high density
regions, separated by areas with a low density, referred to as a
noise. However, the performance of DBSCAN degrades
dramatically with an increasing large source datasets, because
of the execution complexity derived from repeated iterations
on the initial dataset.

As a solution for the aforementioned traditional
DBSCAN’s limitation, [14] proposed a variation called
DBSCAN-MapReduce (DBSCAN-MR), which aims to solve
the scalability problem of the traditional technique for
scenarios that contain increasing number of input elements,
subdividing the initial dataset on multiple nodes, and
executing on each of them the classical DBSCAN algorithm.
In this way, the complexity of the problem is reduced, since it
is no longer the complexity of running on the entire dataset,
but only of a single portion, where each partition is processed
within MapReduce operations. However, DBSCAN-MR has
not been designed with the goal of optimally solving the load-
balancing problem. Add to this the fact that it is a generic
application for the MapReduce, hence preparation of spatial
datasets has not been considered. For these reasons, we have
specialized three services from our top layer: i) preparation as
filtering service; ii) querying service that optimizes several
spatial query types and transforms queries into GeoSpark’s,
and sequentially, Spark’s jobs; and iii) self-adaptation service.

The filtering service reads input data from a geospatial
dataset and utilizes GeoSpark to construct a PointRDD. Since
not all points satisfy requirements of our scenario, filters that
operate on all parameters of each point have been provided in
the service layer. First, a user filter allows to filter the input
database by selecting only points related to a single user or a
set of users. Then, an accuracy filter enables threshold values
of accuracy that can be set so that only points that satisfy will
be considered. Moreover, a date filter allows to define start

date and end date within which to consider the input elements,
making the analysis restricted to a specific period. Finally, a
motion filter supports filtering the items that are in motion, by
eliminating consecutive elements that are recorded for the
same user. Elements that meet all desired constraints are saved
in an RDD; we use a module called ParticipActPoint,
specifically designed for this purpose. Thereafter, GeoSpark’s
Point class will be used for simplifying the structure of each
element keeping only the longitude and latitude.

Focusing on the second querying service, it realizes the
DBSCAN-MR algorithm that in its turn incorporates various
types of spatial queries. First, the partitioning phase
breakdowns internal elements of PointRDD on different

nodes in a cluster or cloud, where every node clusters a local
subset of data. We have defined a ManagePartitions

module with two different methods of data partitioning;
prepareVertical, which subdivides the RDD to form

parallel partitions, and the second one makes a grid
partitioning. Both methods require an RDD input of points,
and a parameter for the operation of the algorithm DBSCAN,
namely Eps used later to determine the maximum distance for
the creation of the cluster, and in particular, to decide the
width of the edges to replicate (2Eps). In the subsequent
mapping phase, classical DBSCAN is applied to local data of
each node. Once the algorithm examined all points in all
nodes, the output of the mapping returns a new RDD, this time
with the key ID of the point and the CompletePoint (a

module we defined to reformat points). Finally, the Reduce

function groups together all elements that share the same ID
replicated on multiple partitions, which determine the union of
temporary clusters located in different partitions that will be
merged in a later stage. Results from the reduce phase are
merged to find out the cluster’s global structure. In the
Relabeling phase, each core local point that belongs to a

global cluster is relabeled to identify the resulting cluster. We
have used Spark’s broadcast variable for this purpose.

Finally, the self-adaptation service is applied to enforce the
load balancing of data across the computing nodes. At each
attempt, a new configuration of cuts that balances the timing
within partitions is automatically calculated. In particular, this
will define new cutting factors for subsequent sessions of the
algorithm, thus balancing the local execution time in all
partitions, therefore reducing the overall time and optimizing
the overall performance of the algorithm.

IV. EXPERIMENTAL RESULTS

Moving from boards to the reality, to analyze the
performance of our framework, we have tested the application
of the DBSCAN-MR utilizing service from the top-layer of our
framework, with a focus on self-adaptation, and using the
scenario discussed earlier. By doing this, we test the integration
of our added features with those offered by GeoSpark.

Our experimental setup utilized Amazon AWS cloud’s
computing services, specifically Amazon’s EC2 service,
where 5 nodes have been used for deployment, one master and
four slaves. On each node, Spark 1.6.2 was installed, and
Ganglia 3.7.2 was used for performance analysis. Our input
database consisted of 250,000 spatial objects collected through

Fig. 1. Framework Architecture.

the ParticipAct project [12]. Each point in the ParticipAct
database includes the following attributes: i) the data_id
parameter is a unique sequential integer for each record in the
database, it is the id of the point in the ParticipAct database; ii)
two timestamps, received_timestamp and sample_timestamp,
the first marks the time when the point has been received from
ParticipAct platform, while the second represents the time
when the data was actually sampled; iii) the accuracy
represents the degree of accuracy, and the reliability of the
information received; iv) latitude and longitude that represent
the coordinates of the point; v) he provider parameter that can
be of three types: gps, network or fused, depending on the type
of detection instrument used to locate the spatial object; and
vi) the user_id parameter, which represents a single user.

We performed ten experimental sessions on the same
dataset, keeping the parameters of DBSCAN-MR algorithm
fixed, but automatically changing the cut factors with each
session, aiming to optimize the size of partitions, and therefore
the position of latitude’s edges, and consequently speeding up
the entire process of determining the resulting cluster. This
process was carried out automatically by our support through
partition configurations provided by the self-adaptation service
that stopped after ten iterations because there was no further
major benefit (the overall time improvement was below 1%) in
further adjusting the configuration cuts.

Particularly, Fig. 2 and Fig. 3 show the percentage of CPU
usage at the four slaves for the whole experiment duration for
the first (Fig. 2) and tenth (Fig. 3) execution iterations. It is
evident that the total time has been optimized in terms of the
termination time on each partition; in fact, after ten iterations
each partition completed its local execution of the classic
DBSCAN with nearly a synchronized time comparing to
others, thus reducing the total running time of the DBSCAN-
MR.

Delving into finer details, Fig. 2 shows the first (non-
optimized) iteration where the total length is 50.1 minutes.
Each line represents a node and it is possible to note the end of
execution of each of them. In particular, the first three ended
execution early, meaning that in the fourth node there is a
higher concentration of the cluster. Initial configuration of the

cuts, chosen as default and evenly distributed values are,
respectively, 0.25, 0.50, and 0.75.

Fig. 3, instead, shows the tenth iteration, and thanks to our
automatic management operations the total time length has
more than halved to 22.7 minutes. This is because our self-
adaptation service successfully balanced the data distribution in
order to have the execution time of each partition
approximately similar. The resulting final configurations of the
cuts are 0.27, 0.43 and 0.52.

Finally, Fig. 4 shows the timing in relation to three
execution iterations: the first, the fifth, and the tenth. As
shown, the execution time continuously improves and reduces
from 50.1 minutes (first iteration) to 22.7 minutes (tenth
iteration), obtaining a percentage of speed-up improvement
equivalent to 54.7%.

V. RELATED WORKS

Many Hadoop-based frameworks can be tackled in the
literature, [15] presented HadoopDB, which is an integration
between Hadoop and Postgres Spatial, aiming to facilitate
computations on huge spatial data. However, their system
employs Hadoop native libraries for processing geospatial data
extracted from a Postgres spatial database, hence a big effort is
required for executing spatial geometric computations. In
addition, they did not provide services for load-balancing, thus
efficiency degrades at execution time.

Fig. 2. First Execution of DBSCAN-MR.

Fig. 4. Query Performance Optimization using our Framework.

Fig. 3. Tenth Execution of DBSCAN-MR.

Also, [16] implemented a VegaGiStore system on top of
Hadoop, aiming to support various concurrent spatial queries
for real-life applications. However, their spatial data
partitioning method did not consider dependable load-
balancing, which leads to significant loss of efficiency in case
of applying computation-intensive clustering algorithms.

A method has been developed by [17] to efficiently process
big spatial data queries by introducing a hierarchical spatial
index, that is implemented on top of HBase. Also, it provides
prefix matching filtering service, to filter spatial objects based
on some constraints. However, their implementation did not
consider the possible incorporation of other services, so it is not
a general-purpose framework and cannot be adapted to be
incorporated with emerging big data processing systems like
Spark.

A geospatial data processing framework was designed by
[18], aiming to better manage and process spatial data in a
distributed fashion with an awareness for extensibility and
adaptability. They based the framework on Hadoop, with the
goal of an effortless adaptation of existing spatial algorithms to
the distributed paradigm. However, it does not consider a self-
adaptation service in the top layer. Also, it is based on Hadoop,
thus extending it to handle online spatial data streams will
require enormous efforts.

Nowadays, shelves have become increasingly saturated
with geospatial query processing engines, thus choosing the
correct solution become harder. Yet, most systems and
frameworks of the literature have considered only Hadoop. As
far as we know, there is no fully optimized solution that is built
on top of ◌ٍ◌ٍ◌ٍSpark and its spatial extensions, that aims to
optimize geospatial query processing with a prioritization for
load balancing.

VI. CONCLUSIONS AND FUTURE WORK

The ever-increasing diffusion of sensor-enabled portable
devices enabled the collection of an unprecedented huge
amount of geospatial data, where analysis has become essential
for knowledge discovery. However, traditional database
processing systems are unable to analyze such massive amount
of data reliably. Also, despite that big data processing systems
appeared like Hadoop and Spark, they do not provide specific
support for spatial data processing, which, in turns, led to the
appearance of extensions like GeoSpark. However, Geospark
does not provide a full-fledged top layer service, requiring the
developer to spend more efforts in the integration with
GeoSpark while executing complex query-intensive
algorithms. In this paper, we have introduced a framework for
efficiently querying and analyzing big geospatial data, which
was plugged on top of GeoSpark, with a motivation to optimize
the performance. Several experiments using real spatial data on
a 5-nodes Amazon’s EC2 cloud have shown a unique
performance.

In the future, we envision a contribution that incorporates
more services to the top layer of our framework. Those may
include, other types of queries, machine learning and data
mining services with awareness for geospatial analysis.
Another research direction is to provide services that simplify
developer’s interaction with the top layer, by providing a full-

fledged native library of services that are customizable for
various application scenarios. Finally, there are many
application scenarios nowadays that require online streams of
spatial data to be analyzed on-the-fly. In this paper, we have
only considered offline disk-resident datasets, but another
promising research avenue is to adapt this framework so that it
applies to online geospatial data streams.

ACKNOWLEDGMENT

This research was supported by the Sacher project (no.
J32I16000120009) funded by the POR-FESR 2014-20 program
through CIRI.

REFERENCES

[1] G. Cardone et al., "The participact mobile crowd sensing living

lab: The testbed for smart cities," IEEE Communications

Magazine, vol. 52, pp. 78-85, 2014.

[2] J. Dean and S. Ghemawat, "MapReduce: simplified data

processing on large clusters," Commun. ACM, vol. 51, pp. 107-

113, 2008.

[3] Hadoop. Available: http://hadoop.apache.org/

[4] M. Zaharia et al., "Spark: cluster computing with working sets," in

Proc. of the 2nd USENIX conference on Hot topics in cloud

computing, Boston, MA, 2010.

[5] M. Zaharia et al., "Resilient distributed datasets: a fault-tolerant

abstraction for in-memory cluster computing," in Proc. of the 9th

USENIX conference on Networked Systems Design and

Implementation, San Jose, CA, 2012.

[6] J. Yu et al., "GeoSpark: a cluster computing framework for

processing large-scale spatial data," in Proc. of the 23rd

SIGSPATIAL International Conference on Advances in

Geographic Information Systems, Seattle, Washington, 2015.

[7] A. Eldawy and M. F. Mokbel, "SpatialHadoop: A MapReduce

framework for spatial data," in Proc. of 2015 IEEE International

Conference on Data Engineering, 2015, pp. 1352-1363.

[8] A. Aji et al., "Hadoop-GIS: A High Performance Spatial Data

Warehousing System over MapReduce," in Proc. of VLDB

Endowment, vol. 6.

[9] S. You et al., "Large-scale spatial join query processing in Cloud,"

in 2015 31st IEEE International Conference on Data Engineering

Workshops, 2015, pp. 34-41.

[10] A. Corradi et al., "Smartphones as smart cities sensors: MCS

scheduling in the ParticipAct project," in Proc. of the 2015 IEEE

Symposium on Computers and Communication (ISCC), 2015.

[11] H. Karau et al., Learning Spark: Lightning-Fast Big Data

Analytics: O'Reilly Media, Inc., 2015.

[12] G. Cardone et al., "ParticipAct: A Large-Scale Crowdsensing

Platform," IEEE Transactions on Emerging Topics in Computing,

vol. 4, pp. 21-32, 2016.

[13] J. Sander et al., "Density-Based Clustering in Spatial Databases:

The Algorithm GDBSCAN and Its Applications," Data Min.

Knowl. Discov., vol. 2, pp. 169-194, 1998.

[14] B. R. Dai and I. C. Lin, "Efficient Map/Reduce-Based DBSCAN

Algorithm with Optimized Data Partition," in 2012 IEEE Fifth

International Conference on Cloud Computing, 2012, pp. 59-66.

[15] U. Bellur, "On Parallelizing Large Spatial Queries Using Map-

Reduce," in Proc. of Int. Symp. on Web and Wireless Geographical

Information Systems (W2GIS), South Korea, May 2014.

[16] Y. Zhong et al., "Towards Parallel Spatial Query Processing for

Big Spatial Data," in Proc. of IEEE 26th Inter. Parallel and

Distributed Processing Symp. Workshops & PhD Forum, 2012.

[17] K. Lee et al., "Efficient spatial query processing for big data," in

Proc. of the 22nd ACM SIGSPATIAL Int. Conf. on Advances in

Geographic Information Systems, Dallas, Texas, 2014.

[18] R. Giachetta, "A framework for processing large scale geospatial

and remote sensing data in MapReduce environment," Computers

& Graphics, vol. 49, pp. 37-46, 2015.

