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Recommender Systems

* Recommender systems(RSs) provide
recommendations to users on items of interest.

* RSs work by calculating top ranking list of items
recommended for users.

* A deep analysis of historical user-item interaction
« Explicit: ratings (a.k.a. explicit feedback) or
» Implicit: the time a user spends viewing a page of a specific item
online.
* Collaborative Filtering (CF) remains the most
predominant conventional RS.
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Explicit Feedback
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1112 Are additional attributes helpful!

* Conventional RSs are not aware of the
contextual information that may be served as
additional information with the input data.

* Additional contextual information has a utility
iIn Improving the overall recommendation
precision.
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Context

* Any associated information that is useful for
characterizing the situation of an object.

What sort of trip was this?

5]

Business

Do
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Family Friends Solo

Couples

When did you travel?

Select one [=]

Could you say a little more about it? (optional)
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Context-aware interactions
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Image source: Adomavicius, Gediminas, and
Alexander Tuzhilin. "Context-aware recommender
systems." Recommender systems handbook.
Springer, Boston, MA, 2011. 217-253.
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Incorporating Context Information
into Recommender Systems

 Three approaches:

(a) Contextual Prefiltering (b) Contextual Postfiltering (c) Contextual Modeling
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' F) Item Splitting

* A dimensionality reduction: transforming a 3-
dimensional rating interactions into a 2-
dimensional counterpart.

User | Item | Context rating User new Item [rating
User1| ltem1 | weekend 5 Item Split >User1 Item11 3
UserZ | liem1 | weekday |3 UserZ2| Item12 3
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47 User Splitting

* Same users show statistically significant
feedback differences depending on various
contextual conditions.

User|Item | Context rating User new Item|rating
userl | ltem1 | weekend |5 User Split >User11 Item1 >
Userl | ltem1 | weekday |3 Userl?2 Itemil 3
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US-NCF: context incorporation for DL-based
RSs
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Using US-NCF with Online Social Networks

Our context-aware
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Experimental setup

® Evaluation metrics
— average Mean Absolute Error (MAE) and
validation loss
— For ranking (i.e., top-N), we adopt an accuracy
measure known as precision-in-top-N. We
specifically have adopted ‘top-one-accuracy’
(a.k.a. P@1)
® Testbed

Cluster: our prototype over BigDL [9] , which is
coined over Apache Spark [10]. Therefore,
taking advantage of the distributed running of
the training models

Datasets:

* two explicit feedback rating datasets
— Movie rating dataset, Movielens 1M
— trip planning website TripAdvisor
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MAE of US-NCF Vs. baselines for all
datasets

movielLens
dataset

W CA-NCF EBENCF &BBiasedMF BUS-NCF

« our model US-NCF significantly surpasses several baselines. On average, a gain that
equals 1.8% was obtained compared to plain NCF, slightly better that that obtained
when applying the state of art CA-NCF.

* A higher gain is obtained when comparing US-NCF with conventional context-free
model, specifically BiasedMF, where we obtain, on average, a gain that equals
roughly 13.3%.
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Validation loss of US-NCF Vs. NCF against
‘number of iterations’ on MovielLens 1M dataset.
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« , averaged from 100 running sessions. On average, we got
roughly 1.2% loss gain because of applying US-NCF
instead of the stock version NCF.
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Top1Accuracy US-NCF against baselines on all
datasets
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» US-NCF compares favorably to the baselines. We roughly obtain 4% and 90%
when comparing US-NCF to the context-free plain NCF and BiasedMF,
respectively. This signifies the importance of incorporating contexts in RSs. Also, it
suggests that even context-free deep-learning based RSs perform better than
traditional counterparts. The novel method US-NCF performs similarly when
comparing it with the item-based state-of-art context-aware RS (CA-NCF).
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Concluding remarks

Incorporating context information into social recommender systems is important for
generating more personalized recommendations.

US-NCEF is favorable over CA-NCF for social recommender systems. It 1s designed
to model user’s contexts, whereas CA-NCF was designed to model item’s context.

For SRSs, it 1s the relationships between the users that is the center of the analysis,
not between items.

The state-of-art method CA-NCF incorporates contexts with items of the plain
NCF, thus recovering an item-based NCF, whereas the novel method US-NCF
incorporates context into users, thus recovering a user-based version of NCF.

A future work would include testing other pre-filtering approaches such as User-
[tem-Splitting, which combines the benefits of user-splitting and item-splitting.
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Q&A and Contacts

Thanks for your attention!

Question's time...

Luca Foschini
Email: luca.foschini@unibo.it

Isam Al Jawarneh
Email: isam.aljawarneh3@unibo.it
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