
© 2022 Isam Mashhour Al Jawarneh & Luca Foschini

Designing Distributed Geospatial
Data-Intensive Applications

Ph.D. Course, 2022

Instructors:

Prof. Luca Foschini, Associate Professor &
Dr. Isam Mashhour Al Jawarneh, Postdoctoral Research Fellow

{isam.aljawarneh3, Luca.foschini}@unibo.it
Department of Computer Science and Engineering (DISI), Università di Bologna

© 2022 Isam Mashhour Al Jawarneh & Luca Foschini

Part 1
Introduction

18th July 2022

© 2022 Isam Mashhour Al Jawarneh & Luca Foschini

What makes an application data-
intensive

© 2022 Isam Mashhour Al Jawarneh & Luca Foschini

Big data management

• What all those are
about?
• Big data management

in distributed systems

© 2022 Isam Mashhour Al Jawarneh & Luca Foschini

Driving forces for distributed data management

• Unprecedented voluminous amounts of big data are
generated by big tech companies such as Google,
Amazon, Twitter

• They need new tools, beyond the traditional server-
based deployments, that enable management of such
data, at scale

• Mature open-source projects are preferred over in-house
counterparts

• Network transfer capabilities are becoming faster,
enabling parallelism to become the de facto standard

© 2022 Isam Mashhour Al Jawarneh & Luca Foschini

Data-intensive applications
• What makes an application data-intensive

• Data is its primary challenge
• Data volume, complexity, speed of arrival &

change
• Novel distributed computing tools have emerged

for the storage and processing of such data
• Scalable distributed storage systems (e.g.,

MongoDB) and data processing (e.g., Apache
Spark & Hadoop)

• Related technologies: message queues, caches,
search indexes, frameworks for batch and
stream processing

© 2022 Isam Mashhour Al Jawarneh & Luca Foschini

This course
• We need a deep technical understanding of the big data technologies

and
• The trade-offs of design choices for domain-specific applications
• In this course, we are focusing on georeferenced big data

management in distributed computing deployments
• It is true that the technology is rapidly changing

• However, enduring principles remain valid for all tools
• Understanding those principles helps us choose the right tool and add

custom tools to improve its performance in a domain-specific direction
• A technological view of the landscape of tools for big data management

• With a domain-specific focus (spatial)
• With examples of successful frameworks and systems
• A deep preview of the internal building blocks

• It is not about how systems work; it is more about why they work in a specific
way

• Fundamental principles and trade-offs
• Design decisions
• Always in the scope of spatial big data

© 2022 Isam Mashhour Al Jawarneh & Luca Foschini

What makes an application data-intensive

• Data is the main challenge (the dominating
factor)
• Data size
• Complexity
• Uncertainty (speed at which data is changing)

© 2022 Isam Mashhour Al Jawarneh & Luca Foschini

Data size

• To give you a sense of possible data sizes

© 2022 Isam Mashhour Al Jawarneh & Luca Foschini

Data-intensive examples

1) Searching the WWW

• As of May 2022, the estimated
number of Web pages indexed by
Google is circa 60 billion.

• Almost 70 petabytes (PBs) of data
in only one Google BigTable

• To manage such a huge amount
of data (storage & searching)

• Google built a custom file system
and indexing methods

• Running in distributed
deployments (computing clusters)
consisting of thousands of
machines

GB = Sorted on Google and Bing
BG = Sorted on Bing and Google

Image source

© 2022 Isam Mashhour Al Jawarneh & Luca Foschini

Data-intensive examples (cont.)

2) Online applications
• Online service providers manage and deliver big data to billions

of users worldwide
• YouTube serves more than 1 billion page views daily

• Several petabytes
• Netflix stores several petabytes of data on Amazon’s EC2
• eBay multi-petabyte (users & event logs data)

3) Other businesses (telecommunication & banks)
• AT&T

• Multi-petabytes of network daily data

© 2022 Isam Mashhour Al Jawarneh & Luca Foschini

BIG  Chain
supermarkets

BIGGER Smart
Cities

The BIGGEST ever

© 2022 Isam Mashhour Al Jawarneh & Luca Foschini

Scientific data are the biggest ever

• Phase 1– representing approximately 10% of the whole
Square Kilometer Array (SKA) Telescope – will generate
around 300 PB (petabytes) of data products every year

• This is ten times more than today’s biggest science
experiments

• From tutorial titled: “Solving astrophysics mysteries with big
data”

By : A/Melanie Johnston-Hollitt, Board of Directors, New
Zealand

© 2022 Isam Mashhour Al Jawarneh & Luca Foschini

Big Data & more

Information systems require a quality-aware vision that can organize the whole
data lifecycle

5 V’s for new data processing
and
novel data treatment

• Volume of Data
• Variety of Data
• Velocity
• Value
• Veracity

6 V’s also Data Dynamicity
• Variability

© 2022 Isam Mashhour Al Jawarneh & Luca Foschini

Data-intensive domain

• To make it clear the distinction of
data-intensive from other domains

• Characteristics of data-intensive
applications

• Manage multi-petabytes of data
• Distributed data coming from

heterogeneous sources (requires
fusion)

• Amenable to straightforward
parallelization

• Challenges in distributed systems
include

• Data management
• Fusion techniques
• Data distribution & querying

© 2022 Isam Mashhour Al Jawarneh & Luca Foschini

Building blocks of data-intensive applications
• Common building blocks include:

• Data storage (database)
• Keeping the output of expensive operations (caching)
• Appropriately searching & filtering data (indexing)
• Processing data on-the-fly (stream processing)

• Unbounded stream of data instead of a batch of data points
• Crunching huge amount of static data (batch processing)

• Fixed pool of data that we will process to get a result

Data store

Event stream

Data batches Batch processor

outputLarge batches are
processed on
scheduled basis

Event stream Data stream events are processed
in real time as they are being
ingested by the system

Stream processor

© 2022 Isam Mashhour Al Jawarneh & Luca Foschini

Challenges

• Several tools to choose from for various applications with
varying requirements

• Indexing, caching , batch & stream processing may differ
significantly across different frameworks

• Is single tool enough for satisfying the application requirements
• Do we need to combine functionalities from various tools

• How can we build efficient data-intensive applications?
• What tools have in common, what distinguishes a tool

from others for a specific data-intensive workload
• What design decisions should be considered when

building a specific data-intensive application

© 2022 Isam Mashhour Al Jawarneh & Luca Foschini

Challenge: single tool does not fit all!

• Data-intensive applications are characterized by
having wide-ranging demanding requirements that
there is no such thing like “ single tool fits all”

• No single tool can meet the storage & processing
requirements altogether

• One size does not fit all
• Different application workloads may require

purpose-built systems
• Design tradeoffs decisions  performance

tradeoffs

• Divide & conquer
• Divide the workload into tasks
• Run each task on a single tool
• Stitch single tools together to accomplish the big

task

© 2022 Isam Mashhour Al Jawarneh & Luca Foschini

Example data-intensive Application Scenario
• A mixed-workload scenario requiring

at least
• Traffic Light Controller. Actuator decides to

change lights consistently for ambulance to
pass

• Smart Real-time Pathfinder. Interactive
navigation map for ambulances and other
vehicles

• Real-time Community Detector. Identify
volunteers' communities in the surroundings of
the patient

Combining tools to provide the
service
Creating a special-purpose data-

intensive system by stitching together
various general-purpose tools
Batch & stream processing, scalable

storage, and stream data ingestion
What guarantees we can assure by

this combination?

patient

Community
volunteers

participatory healthcare

© 2022 Isam Mashhour Al Jawarneh & Luca Foschini

Requirement for services

In distributed systems, while services must be correctly provided

A critical goal is the Quality of Service (QoS), in the sense of provisioning with
some parameters and respecting some requirements

The QoS has many different meanings, because it is a very general quality
indicator

It can stress response time, security, correctness, availability, confidence, user satisfaction, …

QoS goals (conflicting?) in the Old and the New World
• Old world: typically, main goals reliability and enforced consistency
• New world: scalability and availability matters most of all
Focus on extremely rapid response times: Amazon estimates that each millisecond of delay has
a measurable impact on sales!

© 2022 Isam Mashhour Al Jawarneh & Luca Foschini

Common desired guarantees

• Reliability
• The performance of the system is predictable in face of data

load and volume
• Avoiding failures, such that the system continues providing the

expected service

• Scalability
• Coping up with data loads. As data size grows, complexity and

speed, system should adapt appropriately
• Hardware scalability. Overprovisioning resources, or
• Approximate Query Processing (AQP). Data reduction techniques.

• Maintainability
• The system should be adaptable in face of emerging scenarios

© 2022 Isam Mashhour Al Jawarneh & Luca Foschini

Scalability
• Load can be described in several ways

• Number of requests per second for a specific service
• Ratio of reads to writes
• Number of users active simultaneously

• Design choices are affected by the average loads

• Performance
• How the system is behaving when load changes
• If we need the to maintain the performance, what choice should we

make
• Hardware scalability or AQP

• Measurements
• Throughput

• Number of records that can be processed per second
• Total time to run on a given data of specific size

© 2022 Isam Mashhour Al Jawarneh & Luca Foschini

Response time
• Response time

• The time between sending request and
receiving response

• Actual request processing time (i.e., service
time) plus network & queueing delays

• May differ for different requests, need to be
measured for each workload

• We normally report the average response
time, percentiles , or median (50th percentile)

• Mean does not show the outliers
• Percentiles are preferred
• Sorting response times in decreasing

order, the median is the halfway point

• Specified in a service level objective (SLO) or
service level agreement (SLA)

• e.g., median response time less than 100 MS,
95th percentile under 1 second

© 2022 Isam Mashhour Al Jawarneh & Luca Foschini

How response time is affected in parallel computing
systems

• The slowest call dominates
the overall response time

• Load balancing is key (later
discussion)

Worker
2

Worker
1

Worker
3

Worker
4

Worker
5

request

10 ms 15 ms 50 ms 18 ms 12 ms

12 ms
18 ms

50 ms
15 ms

10 ms

request

response

© 2022 Isam Mashhour Al Jawarneh & Luca Foschini

Coping up with load fluctuations
1) Scaling

• Up (vertical). Deploying more powerful single beefed-up servers
• Out (horizontal, shared-nothing architectures). Distributing the load to

multiple machines
• Design decision

• What kinds of operations are common
• Stateless (parallelization is straightforward), stateful (additional

complexities are facing distributed architectures)
• No single architecture is the best

• Reading & writing loads (access patterns),
• Data complexity
• Response time requirements

2) Approximate Query Processing (AQP)
• Reduce data size with techniques that guarantee QoS (accuracy, response time,

etc.,) to some extent

© 2022 Isam Mashhour Al Jawarneh & Luca Foschini

Coping up with load fluctuations
(cont.)
• Vertical Scaling

• Increasing single server capacity
• More powerful CPU, more RAM, more storage space
• Could easily be hindered by limitations in technology

• Horizontal Scaling
• Dividing data and load to multiple servers
• Each machine handles partial set of the data workload,

providing much better efficiency than a single high-capacity
server

• Increased infrastructure complexity and maintenance

© 2022 Isam Mashhour Al Jawarneh & Luca Foschini

Behind the Woods: support for…

To provide QoS distributed systems have to support some coverage of properties
and functions

• Replication: usage of multiple copies of resources
• Grouping: keeping together different copies and behavior
• Simplified delivery: new tools and technologies to fasten development &

deployment of complex applications
• Automated management: infrastructures taking care of management burden

with minimal human intervention
• Batch data processing: storage/processing of massive amounts of data, such

as for Google Web indexing
• Streaming data: dealing with information series coming from a set of grouped

info, such as a video, sensors, etc.

© 2022 Isam Mashhour Al Jawarneh & Luca Foschini

Anatomy of distributed model solutions
for data-intensive problems

Processing pipelines & stages

© 2022 Isam Mashhour Al Jawarneh & Luca Foschini

Typical architecture of data-intensive applications
• Common stages

• Data collection
• Bringing data from sources (probably

heterogeneous) to data-intensive applications
• Data transformation

• Reduction. transformation of data into a simplified
form,
which is more amenable to downstream
processing

• Normally single-pass for scalability
• Sampling, data pruning, etc.,

• Data storage
• Analysis

• Discover patterns in the data
• and Visualization

• Visualizing the output of data intensive applications, helping
the user make informative decisions

© 2022 Isam Mashhour Al Jawarneh & Luca Foschini

Data-intensive processing pipeline
• Scientific data-intensive problems

need processing pipelines
• Collecting the data
• Reducing it size and performing other

transformations (sampling,
summarizations, aggregations, indexing,
etc.,)

• Applying advanced specialized
algorithms to analyze & process the
midway data, resulting in human-
readable knowledge

• Normally requires data parallelism
(distributed computing clusters or
HPC)

• User visualize the data in informative
ways, investigating and validating
the outputs

© 2022 Isam Mashhour Al Jawarneh & Luca Foschini

Data Transformation Model

The main workflow is to move data from source to sink via a pipeline easy to map and describe

New support architectures with novel design principles based on quality-aware services

© 2022 Isam Mashhour Al Jawarneh & Luca Foschini

An example: Netflix

Personal service to play movies on demand

User Perspective

Server Netflix.com

Simple design?
Netflix owns the data center and content distribution infrastructure

BUT, in reality….
Netflix owns neither a data center nor a distribution infrastructure

© 2022 Isam Mashhour Al Jawarneh & Luca FoschiniV.K. Adhikari et al., “Unreeling Netflix: Understanding and Improving Multi-CDN Movie Delivery“, IEEE INFOCOM, 2012.

Movies:
Master copies

CDN Companies

Content
Delivery
Networks

Netflix: the complex picture

© 2022 Isam Mashhour Al Jawarneh & Luca Foschini

storage

computing

DBMS

memory

Amazon Web Services (WS) Elastic
Cloud Computing (EC2) resources
• Leased and Paid-per-use
• Eased management (e.g.,

automated load balancing)

Netflix & AWS EC2 in a Nutshell

© 2022 Isam Mashhour Al Jawarneh & Luca Foschini

Example processing & analysis in data
intensive applications

• Clustering (e.g., DBSCAN-MR, for DBSCAN
MapReduce)

• Grouping data into clusters, such that same-
cluster items are more similar than items in
other clusters

• Similarity is a domain-specific measurement
• e.g., spatial applications, nearby spatial

objects in real geometries form clusters

• Search (proximity search)
• Finding objects with specific attribute values

© 2022 Isam Mashhour Al Jawarneh & Luca Foschini

Parallelism is essential

• Reduced data size does not guarantee the
ability of efficient processing

• Data parallelism is often involved, using computing
clusters of machines

• Data parallelism simply implies partitioning
data to multiple portions (MapReduce is the
baseline)

• Process each portion independently & concurrently
across multiple computing machines in a cluster

• Combine the sub results to produce the output

• Google & Microsoft multi-petabyte data
centers each might contain 100K low-cost
commodity hardware nodes

© 2022 Isam Mashhour Al Jawarneh & Luca Foschini

Example programming model: MapReduce

Programming paradigm for
computing and aggregating large
amounts of data
- Mainly abstractions for data-

intensive applications to exploit data
distributed in computing clusters

- Distributes data & processing to
computing nodes of a cluster

- Then process the data locally at each
computing node independently & in
parallel

- Then, it combines the local results to
form the output

© 2022 Isam Mashhour Al Jawarneh & Luca Foschini

Supporting infrastructures & enabling
technologies for data intensive

applications

© 2022 Isam Mashhour Al Jawarneh & Luca Foschini

Clusters in public Cloud, private Cloud,
virtual machines, and virtualization of

clusters

© 2022 Isam Mashhour Al Jawarneh & Luca Foschini

Cloud Revolution…

Cloud is a buzzword to be used in advertising and it is sometimes depicted as a
revolution

The are many books about Cloud as a revolutionary technology

In general terms, there is no solution of continuity both under an organization and
a technical perspective

© 2022 Isam Mashhour Al Jawarneh & Luca Foschini

Clouds are Cheaper…
and Winning…

Range in size from “edge” facilities to
megascale

Scale economies

Approximate costs for a small size
center (1K servers) and a larger, 50K
server center

Each data center is
11.5 times

the size of a football field

Technology Cost in small-sized
Data Center

Cost in Large Data
Center

Cloud Advantage

Network $95 per Mbps/
month

$13 per Mbps/
month

7.1

Storage $2.20 per GB/
month

$0.40 per GB/
month

5.7

Administration ~140 servers/
Administrator

>1000 Servers/
Administrator

7.1

© 2022 Isam Mashhour Al Jawarneh & Luca Foschini

Cloud architectural comparison

© 2022 Isam Mashhour Al Jawarneh & Luca Foschini
National Institute of Standard and Technology NIST

The NIST Cloud Definition Framework

© 2022 Isam Mashhour Al Jawarneh & Luca Foschini

What is a Cloud

One Cloud is capable of providing IT resources ‘as a Service’

One Cloud is an IT service delivered to users that have:
• A user interface that makes the infrastructure underlying the service

transparent to the user
• Massive scalability
• Service-oriented management architecture
• Reduced incremental management costs when additional IT resources are

added

• Services are available via Web or REST interfaces
• Other user requirements possible based on

geographical preferences, localization constraints, …

© 2022 Isam Mashhour Al Jawarneh & Luca Foschini

Partial landscape of Cloud-based systems

H. Zhang, G. Chen, B. C. Ooi, K. L. Tan and M. Zhang, "In-Memory Big Data Management and Processing: A Survey," in IEEE Transactions on
Knowledge and Data Engineering, vol. 27, no. 7, pp. 1920-1948, July 1 2015.

© 2022 Isam Mashhour Al Jawarneh & Luca Foschini

Distributed architectures for big data
management

© 2022 Isam Mashhour Al Jawarneh & Luca Foschini

Reference architectures for storage and
processing of big data, such as Lambda

architecture

© 2022 Isam Mashhour Al Jawarneh & Luca Foschini

Lambda Architecture

• Challenges associated with
managing mixed streaming big
data workloads have
motivated the emergence of
novel dynamic architectural
patterns such as the Lambda
architecture

• The Lambda architecture
employs real-time stream
processing for timely
approximate results and batch
processing for delayed
accurate results

© 2022 Isam Mashhour Al Jawarneh & Luca Foschini

© 2022 Isam Mashhour Al Jawarneh & Luca Foschini

MongoDB OR
Cassandra

Tweets Event
stream

Data batches Batch processor

Top daily
topics

Persisting each
tweet for delayed
processing

Tweets Event
stream

Real-time processing of trending
topics (processing each coming
tweet)

Stream processor

Kafka
cluster OR
RabbitMQ

Batch storage

Spark OR
HadoopBatch layer

Speed layer

Generating daily topics
report from persisted
batches of tweets

Trending
real-time

topicsSpark Streaming,
Flink, Storm

© 2022 Isam Mashhour Al Jawarneh & Luca Foschini

Key tasks in distributed management of
big data

Partitioning, rebalancing & serialization

© 2022 Isam Mashhour Al Jawarneh & Luca Foschini

Data partitioning
• Distributing partitions of data over

several processing (i.e., worker nodes) or
storage elements in a parallel
computing environment (i.e., Cloud)

• Processing is accomplished
simultaneously by each processor
instance on the corresponding
partition

• One of the reasons to distribute data
loads to multiple machines is the desire
for scalability

• Read & write loads grow significantly
• Large datasets & query loads are

distributed

© 2022 Isam Mashhour Al Jawarneh & Luca Foschini

Data partitioning (cont.)

• Known as sharding in MongoDB,
Elasticsearch, and SolrCloud, region in
HBase, a tablet in Bigtable, a vnode in
Cassandra, and a vBucket in Couchbase

• Shared-nothing architectures (scaling out
or horizontal scaling) are preferred over
shared-memory counterparts for data-
intensive applications

• A single machine (or virtual machine)
running the database software is known
as a node

• Each node uses its CPUs, RAM, and disks
independently Sharding in MongoDB

© 2022 Isam Mashhour Al Jawarneh & Luca Foschini

Load balancing is essential

• The main goal of partitioning is to evenly distribute the data & query loads
across parallelly connected nodes

• This is known as load balancing
• If data is distributed evenly, then in a perfect setting, it means sending the

same amount of data to each node
• In theory, 100 nodes can handle 100 times as much data as a single

node can handle, also having a collective read/write throughput that
is 100 times of that of a single node

© 2022 Isam Mashhour Al Jawarneh & Luca Foschini

Load balancing is essential (cont.)

• On the other hand,
• If data is unevenly distributed, then some nodes are overlooked,

having less data
• While others having much more data, to the point that they

become the bottleneck of storage & processing. Those nodes
are typically known as hotspots

• In this case, the benefits of partitioning easily diminish
• Imagine a worst case where all data load ends up in one

partition, while other partitions are will be idle

© 2022 Isam Mashhour Al Jawarneh & Luca Foschini

Load balancing (smart city scenario)

Is load balancing alone sufficient?!
Only load balancing = shuffling (huge toll) for co-location queries

In Spark join requires
data to reside on the
same partition

© 2022 Isam Mashhour Al Jawarneh & Luca Foschini

Partitioning approaches
• The simplest is randomly & evenly assigning records to nodes

• Achieves load balancing, however,
• Read queries need brute force full scan to find specific

records
• We have no knowledge where specific records reside

• Partitioning by keys
• Key range partitioning

• Assign values within a specific key range to same partitions
• If data is skewed (few keys have more data than others), choose

the range wisely in such a way that you also preserve (to some
extent) the load balancing property

• Sorting keys in each partition speeds up the range queries
• Bigtable, Hbase, and MongoDB

© 2022 Isam Mashhour Al Jawarneh & Luca Foschini

Key range partitioning challenges

Node 1

Node 2

Sensor# date timestamp PM10
1 2022-01-01 20220101-000000 5.3

1 2022-01-01 20220101-000010 4.2

1 2022-01-01 20220101-000020 2.2
2 2022-01-01 20220101-000000 4.7

2 2022-01-01 20220101-000010 7.2

2 2022-01-01 20220101-000020 9.1

Partition key

Time unit
range
readings

Since the key is a timestamp, partitions correspond to time ranges, which leads to
overloading specific partitions by writes (on-the-fly writes as data coming from
sensors)  leads to hotspots

© 2022 Isam Mashhour Al Jawarneh & Luca Foschini

Better design – key range partitioning

Node 1

Node 2

Sensor
#

timestamp date PM10

1 20220101-000000 2022-01-01 5.3

1 20220101-000010 2022-01-01 4.2

1 20220101-000020 2022-01-01 2.2

2 20220101-000000 2022-01-01 4.7

2 20220101-000010 2022-01-01 7.2

2 20220101-000020 2022-01-01 9.1

Partition key

Time unit
range
readings

Prefix each timestamp with the sensor ID such that the partitioning is first by sensor ID and then by
timestamp – load balancing is then achieved (to some extent), assuming that all sensors sending
data at regular basis.
Is something else preserved here?

data co-locality, a desired property for proximity scans readings from same sensors
ends up in same partitions

© 2022 Isam Mashhour Al Jawarneh & Luca Foschini

Hash key partitioning

• Avoiding skewness & hotspots requires other schemes for partitioning data
• Here where hash key partitioning comes in!
• Using a hash function to specify the partition for a specific key
• Good functions transform skewed data to uniformly distributed counterpart

• Cassandra and MongoDB use MD5
• Assign range of hashes to each partition

• Transform key using the hash function, look up the corresponding partition having a hash
range where the hashed key can be assigned and assign it to that partition.

• Good for load balancing,
• and (depending on the application domain) for data co-locality

• True only for some domains such as spatial data, where co-locality can be preserved by
encoding schemes such as geohash (discussed in part 3)

• However, in general purpose domains, co-locality is typically not preserved by hashing, so
it negatively affects range scans (example, MongoDB range scans all partitions if hash-
based sharding is enabled!)

© 2022 Isam Mashhour Al Jawarneh & Luca Foschini

Data skewness & partitioning challenge
• Some data in specific domains is highly skewed

• Skewness is the asymmetry of a distribution of a variable’s value around
its mean

• Some keys in the data may have more frequency than others
• Hashing in this case does not help load balancing as few keys may

dominate the distribution, and will be routed to same partitions, turning
them into hotspots

• As this is domain-specific problem
• In most cases, it can not be automatically mitigated at the system level
• It, otherwise, need to be managed at the application level

• More logistics handling

Mobility data. NYC taxicab dataset is highly skewed

© 2022 Isam Mashhour Al Jawarneh & Luca Foschini

Secondary indexes & partitioning

• Schemes discussed so far work very well for key/value
data, where data is indexed with a single key

• For example, the location in mobility data is a sufficient primary
index as most spatial queries ask location-driven questions
(proximity, range, kNN, spatial join, etc.,. To be discussed in Part 2
of the course)

• But what if we have a secondary index?!
• Frequent scans search for values of specific attributes, beyond the value

of a primary key!
• We need to take the secondary key into consideration for proper

partitioning

© 2022 Isam Mashhour Al Jawarneh & Luca Foschini

Challenge of secondary indexes in partitioning

454  {type: “laptop”, make: “DELL”, RAM: “32”}
222  {type: “laptop”, make: “ACER”, RAM: “64”}
764  {type: “desktop”, make: “DELL”, RAM: “128”}

897  {type: “laptop”, make: “DELL”, RAM: “32”}
111  {type: “desktop”, make: “ACER”, RAM: “64”}
444  {type: “laptop”, make: “Samsung”, RAM: “64”}

Make : DELL  [454,764]
Make : ACER  [222]

Make : DELL  [897]
Make : ACER  [111]
Make : Samsung [444]

Query

Scatter/gather

All computer types where maker is “DELL”

Partition 1 Partition 2

Primary index (global) Primary index (global)

Secondary index(local) Secondary index (local)

© 2022 Isam Mashhour Al Jawarneh & Luca Foschini

Possible solution

454  {type: “laptop”, make: “DELL”, RAM: “32”}
222  {type: “laptop”, make: “ACER”, RAM: “64”}
764  {type: “desktop”, make: “DELL”, RAM: “128”}

897  {type: “laptop”, make: “DELL”, RAM: “32”}
111  {type: “desktop”, make: “ACER”, RAM: “64”}
444  {type: “laptop”, make: “Samsung”, RAM: “64”}

Make : DELL  [454,764,897]
Make : ACER  [222]

Make : ACER  [111]
Make : Samsung [444]

Query

targeted

All computer types where maker is “DELL”

Partition 1 Partition 2

Primary index Primary index

Secondary index Secondary index

© 2022 Isam Mashhour Al Jawarneh & Luca Foschini

Rebalancing
• Things change as time ticks forward

• More CPU is needed as query throughput changes (read/write
throughputs)

• Data size increases, adding more RAM and disk storage is paramount
• Machines may fail or need to reconfigured (downtime is unavoidable)

• Rebalancing means moving data or query requests between
cluster nodes

• Requirements
• Load should be evenly distributed after rebalancing
• Reads/writes should continue operating while in the rebalancing phase
• Moving what is necessary only, to minimize the IO and network

overheads

© 2022 Isam Mashhour Al Jawarneh & Luca Foschini

Rebalancing approaches
• Two approaches

• Approaches that partition in a way proportional
to dataset size

• Fixed number of partitions
• With hash key partitioning

• Dynamic partitioning
• With key range partitioning

• Approaches that partition in a way proportional
to cluster size (number of nodes)

• Fixed number of partitions per node

© 2022 Isam Mashhour Al Jawarneh & Luca Foschini

Rebalancing approaches
• For hash key partitioning

• Using fixed number of partitions is preferred over other
assignments (such as using the mod operation over the hash key)

• If we use “mod” over hash key, then every time we add
partitions or nodes, all records need to be redistributed
because the operation (hash code % value) would result in a
new value (partition number, thus another node), expensive

• Alternatively, having a fixed number of partitions (say 100)
means that adding nodes does not affect the intra-partition
data

• What then needs to be redistributed is full partitions, not
record-by-record

• Used in Elasticsearch & Couchbase

© 2022 Isam Mashhour Al Jawarneh & Luca Foschini

© 2022 Isam Mashhour Al Jawarneh & Luca Foschini

Rebalancing approaches (cont.)

• For key range partitioning
• Fixed number of partitions is prone to unbalanced loads
• Some partitions would have more data (hotspots) than others (idle)

• Partition dynamically
• Build partitions as data arrive

• Adaptable partitioning that senses the data volume
• When the size exceeds the threshold, split the partition and send the new

partition to another node if necessary
• When the size shrinks, combine adjacent partitions
• However, the start is an issue

• With single partition, all writes, and reads are handled by a single node
• Until the partition size reaches the limit, only then parallelization benefits

come on board
• Common in MongoDB, RethinkDB & HBase

© 2022 Isam Mashhour Al Jawarneh & Luca Foschini

Cluster size-driven partitioning

• Fixed number of partitions per node of the cluster
• Adding nodes

• Split partitions randomly so that the number of partitions per
node for the new configuration matches the preset configuration

• Move some of the split partitions to the new nodes to achieve
the required number of partitions per node (approximately)

• Adopted in Cassandra

© 2022 Isam Mashhour Al Jawarneh & Luca Foschini

Human-in-the-loop (HITL) for rebalancing

• Rebalancing could be very expensive
• IO and network transfer overheads
• A mistakenly rebalancing decision with a fake

automatic failure detection can bring the system
into halt!

• So, HITL is preferred

© 2022 Isam Mashhour Al Jawarneh & Luca Foschini

Query forwarding

• Also known as query request routing
• Which nodes to visit for answering a specific query

• Various approaches

• Random
• Routers
• Client-side

• How the router knows about the partition assignment?
• coordination service such as Zookeeper to keep track of this kind cluster

metadata
• HBase, SolrCloud, and Kafka also use ZooKeeper
• MongoDB relies on its own config server implementation and mongos

daemons as the routing tier. Also, Couchbase utilize a similar approach with
routing tier known as moxi

• Cassandra uses Gossip protocol random approach

© 2022 Isam Mashhour Al Jawarneh & Luca Foschini

Query forwarding approaches

Query

Node 0 Node 1 Node 2

Routing information

“DELL”

Query

Node 0 Node 1 Node 2

“DELL”

Query

Node 0 Node 1 Node 2

“DELL”

router

1 2 3
Retrieve “DELL” Retrieve “DELL” Retrieve “DELL”

Random node
selection

“DELL” on Node 2

“DELL” on Node 2

Connect to target
nodes directly

© 2022 Isam Mashhour Al Jawarneh & Luca Foschini

Coordination service - Zookeeper

Node 0 Node 1 Node 2

“DELL”

router

“DELL” on Node 0

Key range partition Node IP address
A – D Partition 0 Node 0 10.10.10.100

E – H Partition 1 Node 0 10.10.10.100

I – L Partition 2 Node 1 10.10.10.101

M – O Partition 3 Node 1 10.10.10.101

Q – S Partition 4 Node 2 10.10.10.102

T – W Partition 5 Node 2 10.10.10.102

X - Z Partition 6 Node 0 10.10.10.100

ZooKeeper

Query Retrieve “DELL”

Routing
information

mapping of partitions to nodes
subscribe

© 2022 Isam Mashhour Al Jawarneh & Luca Foschini

Cloud data management solutions

© 2022 Isam Mashhour Al Jawarneh & Luca Foschini

Data models & query languages

© 2022 Isam Mashhour Al Jawarneh & Luca Foschini

Data models layers

• Layering one data
model on top of
another

• For each layer, the
key question is how
it is represented in
terms of the next-
lower layer

• each layer hides
the complexity of
the layers below it
by providing a
clean data model

Objects (sensors,
cars)

Application
developer view

general-purpose data
model (JSON or XML)

Logical storage
view

bytes in memory, on disk,
or

on a network.
Physical storage

view

Hardware level
Electric currents, light

pulses, magnetic fields

© 2022 Isam Mashhour Al Jawarneh & Luca Foschini

Choosing a data model
• Many kinds of data models
• Data model in a layer affects the performance of

the software on a top layer
• Select a data model that helps the performance

of the data application
• How to choose

• Easy to use against hard usage
• Supported operations and how fast
• Supported data transformation

© 2022 Isam Mashhour Al Jawarneh & Luca Foschini

Challenges in choosing data models

• The key challenge in selecting data model is the ability to
strike the plausible balance of the needs of the
application,

• the performance characteristics of the database engine, and
the data retrieval patterns

• When designing data models, we always consider
• the usage of the data by the underlying application (i.e., queries,

updates, and processing of the data)
• In addition to the inherent structure of the data

© 2022 Isam Mashhour Al Jawarneh & Luca Foschini

Relational Databases Example
Example SQL queries
1. SELECT zipcode FROM users WHERE name = “Bob”;
2. SELECT url FROM blog WHERE id = 3;
3. SELECT users.zipcode, blog.num_posts FROM users JOIN blog ON users.blog_url = blog.url;

user_id name zipcode blog_url blog_id

101 Alice 12345 alice.net 1

422 Charlie 45783 charlie.com 2

555 Bob 99910 bob.bloogspot
.com

3

Users Tables

Primary keys

id url last_updat
ed

num_posts

1 alice.net 5/2/14 332

2 bob.bloogspot
.com

4/2/13 10003

555 charlie.com 6/15/14 7

Blog Tables

Foreign keys

© 2022 Isam Mashhour Al Jawarneh & Luca Foschini

Mismatch with today workloads

Data are extremely large and unstructured

Lots of random reads and writes

Sometimes write-heavy

Foreign keys rarely needed

Joins rare

Typically, not regular queries and sometimes very forecastable (so you can
prepare for them)

In other terms, you can prepare data for the usage you want to optimize

© 2022 Isam Mashhour Al Jawarneh & Luca Foschini

Requirement of today workloads

• Speed in answering

• No Single point of Failure (SPoF)

• Low TCO (Total Cost of Operation) or efficiency

• Fewer system administrators

• Incremental Scalability

• Scale out, not up
• What?

© 2022 Isam Mashhour Al Jawarneh & Luca Foschini

Scale out, not scale out

Scale up => grow your cluster capacity by replacing more powerful machines
the so-called vertical scalability
• Traditional approach
• Not cost-effective, as you are buying above the sweet spot on the price curve
• and you need to replace machines often

Scale out => incrementally grow your cluster capacity by adding more COTS
machines (Components Off The Shelf)
the so-called horizontal scalability
• Cheaper and more effective
• Over a long duration, phase in a few newer (faster) machines as you phase out a few older

machines
• Used by most companies who run datacenters and clouds today

© 2022 Isam Mashhour Al Jawarneh & Luca Foschini

Key-value/NoSQL Data Model

NoSQL = “Not only SQL”
Necessary API operations: get(key) and put(key, value);
• And some extended operations, e.g., use of MapReduce in MongoDB

Tables
• Similar to RDBMS tables, but they …
• Are unstructured: do not have schemas

Some columns may be missing from some rows

• Do not always support joins nor have foreign keys
• Can have index tables, just like RDBMSs

“Table” in HBase
“Collection” in MongoDB

© 2022 Isam Mashhour Al Jawarneh & Luca Foschini

Key-value/NoSQL Data Model
Unstructured

Columns Missing of some Rows

No schema imposed

No foreign keys

Joins may not be supported

user_id name zipcode blog_url

101 Alice 12345 alice.net

422 Charl
ie

charlie.com

555 Bob 99910 bob.bloogspot
.com

id url last_updated num_posts

1 alice.net 5/2/14 332

2 bob.bloogspot
.com

10003

55
5

chalie.com 6/15/14 7

Key Value

Key Value

© 2022 Isam Mashhour Al Jawarneh & Luca Foschini

Column-Oriented Storage

NoSQL systems can use column-oriented storage
RDBMSs store an entire row together (on a disk)
NoSQL systems typically store a column together (also a group of columns)
• Entries within a column are indexed and easy to locate, given a key (and vice-

versa)

Why?
• Range searches within a column are fast since you do not need to fetch the

entire database
e.g., Get me all the blog_ids from the blog table that were updated within the past month;

Search in the the last_updated column, fetch corresponding blog_id column, without
fetching the other columns

© 2022 Isam Mashhour Al Jawarneh & Luca Foschini

MongoDB

MongoDB is Document-oriented NoSQL tool

Open source NoSQL DB

• In memory access to data

• Native replications toward reliability and high availability (CAP)

• Collection partitioning by using sharding key so to keep the information fast
available and also replicated

• Designed in C++

© 2022 Isam Mashhour Al Jawarneh & Luca Foschini

Relational Model Concepts (cont’d.)

• Tables (relations), rows, columns
• Example: list of employees, containing their ID, name and

phone
• Solution:

ID Name phone
1 Tony 999
2 Mark 888
3 Lisa 777

EMPLOYEE

Relation Attributes
(columns)

Rows
(tuples)

© 2022 Isam Mashhour Al Jawarneh & Luca Foschini

Keys (cont’d.)
Less storage space is required!

ID name phone
2 Mark 888
1 Tony 999
3 Lisa 777
4 Tom NULL

employeeID deptID
2 11
2 22
3 22
4 11

EMPLOYEE

WORKS_FOR

ID name
11 marketing
22 IT
33 PR
44 communication

DEPARTMENT

Looks better!

© 2022 Isam Mashhour Al Jawarneh & Luca Foschini

Why not
relational model

• Requires costly join

© 2022 Isam Mashhour Al Jawarneh & Luca Foschini

NoSQL models

• JSON (e.g., MongoDB)
• better locality than the multi-table schema

• No join is required (single query), read
performance

• support for joins is often weak
• Joins can be performed in the application

layer

• Schema-less (schema flexibility)
• schema-on-read Vs. schema-on-write

• closer to the data structures used by the
application

• Limitations
• Reading nested items
• Many-many and many-one relationships

© 2022 Isam Mashhour Al Jawarneh & Luca Foschini

Data encoding
Serialization & marshalling

© 2022 Isam Mashhour Al Jawarneh & Luca Foschini

Data representation

• In-memory
• Objects, structs, lists, arrays, hash tables, trees
• Using pointers to speed up access

• Disk-resident & cross-network
• Sequence of bytes (e.g., JSON)
• Pointers diminish at this stage, different data representation

• Translation between in-memory and disk-resident
representations is required

• Encoding (also goes by other names (serialization or marshalling)
• The opposite process is decoding (parsing, deserialization,

unmarshalling)

© 2022 Isam Mashhour Al Jawarneh & Luca Foschini

Encoding models
• Language specific

• Examples
• Java Serializable
• Python pickle
• Kryo for Java (3rd party)

• Tied to specific language, reading in other languages requires taking care of additional
logistics

• JSON & XML
• Standardized encodings textual format that can be written and read by many programming

languages
• JSON is simpler
• CSV is another popular option
• Schema-less (schema-on-read)
• BSON is a binary encoding variant of JSON, requires less space
• Avro is another binary encoding

• Uses a schema to specify the structure of the data being encoded
• The most compact of all the encodings we have seen

• Omit field names from the encoded data

• JSON is a very viable choice for cloud data management

© 2022 Isam Mashhour Al Jawarneh & Luca Foschini

Cloud programming models

© 2022 Isam Mashhour Al Jawarneh & Luca Foschini

Batch processing models

© 2022 Isam Mashhour Al Jawarneh & Luca Foschini

Data processing in today large clusters

• Engineers can focus only on the application logic and parallel tasks,
without the hassle of dealing with scheduling, fault-tolerance, and
synchronization

• MapReduce is a programming framework that provides

• High-level API to specify parallel tasks

• Runtime system that takes care of

• Automatic parallelization & scheduling

• Load balancing

• Fault tolerance

• I/O scheduling

• Monitoring & status updates

• Everything runs on top of GFS (the distributed file system)

© 2022 Isam Mashhour Al Jawarneh & Luca Foschini

User Benefits

• Automatize everything – for useful special-purpose behavior
in two steps of complementary operations

• Based on abstract black box approach

• Huge speedups in programming/prototyping
«it makes it possible to write a simple program and run it efficiently on a thousand machines in a half hour»

• Programmers can exploit quite easily very large amounts of resources

• Including users with no experience in distributed / parallel systems

© 2022 Isam Mashhour Al Jawarneh & Luca Foschini

Traditional MapReduce definitions

• Statements that go back to functional languages (such as LISP, Scheme) as a sequence of two steps for parallel
exploration and results (Map and Reduce).

• Also in other programming languages: Map/Reduce in Python, Map in Perl

• Map (distribution phase)
1. Input: a list of data and one function
2. Execution: the function is applied to each list item
3. Result: a new list with all the results of the function

• Reduce (result harvesting phase)
1. Input: a list and one function
2. Execution: the function combines/aggregates the list items
3. Result: one new final item

© 2022 Isam Mashhour Al Jawarneh & Luca Foschini

What is MapReduce in a nutshell

• The terms are borrowed from Functional Languages (e.g., Lisp)

• Sum of squares:

• (map square ‘(1 2 3 4)) => Output: (1 4 9 16)

[processes each record sequentially and independently]

• (reduce + ‘(1 4 9 16)) => (+ 16 (+ 9 (+ 4 1))) => Output: 30

[processes set of all records in batches]

• Let us consider a sample application: Wordcount

You are given a huge dataset (e.g., Wikipedia dump – or all of Shakespeare’s works) and asked to list the count
for each of the words in any of the searched documents

© 2022 Isam Mashhour Al Jawarneh & Luca Foschini

Map

• Extensively apply the function
• Process all single records to

generate intermediate
key/value pairs.

Welcome Everyone
Hello Everyone

Input <filename, file text>

Welcome 1
Everyone 1
Hello 1
Everyone 1

Key Value

© 2022 Isam Mashhour Al Jawarneh & Luca Foschini

Map

• In parallel process individual
records to generate
intermediate key/value pairs

Welcome Everyone
Hello Everyone

Welcome 1
Everyone 1
Hello 1
Everyone 1

Input <filename, file text>

Key Value
MAP TASK 1

MAP TASK 2

© 2022 Isam Mashhour Al Jawarneh & Luca Foschini

Map

• In parallel process a
large number of
individual records to
generate intermediate
key/value pairs

Welcome Everyone
Hello Everyone

Welcome 1

Everyone 1

Hello 1

Everyone 1

Why 1

Are 1

You 1

Here 1

…….Input <filename, file text>

MAP
TASK

© 2022 Isam Mashhour Al Jawarneh & Luca Foschini

Reduce

• Collect the whole
information

• Reduce processes and
merges all intermediate
values associated per key

Welcome 1

Everyone 1

Hello 1

Everyone 1

Everyone 2
Hello 1
Welcome 1

Key Value

© 2022 Isam Mashhour Al Jawarneh & Luca Foschini

Reduce

• Each key assigned to one Reduce
• In parallel processes and merges all intermediate values by

partitioning keys
• Popular splitting: Hash partitioning, such as key is assigned to

– reduce # = hash(key)%number of reduce tasks

Welcome 1

Everyone 1

Hello 1

Everyone 1

Everyone 2

Hello 1

Welcome 1

REDUCE TASK 1

REDUCE TASK 2

© 2022 Isam Mashhour Al Jawarneh & Luca Foschini

MapReduce: a deployment view

• Read many chunks of
distributed data (no data
dependencies)

• Map: extract something from
each chunk of data

• Shuffle and sort
• Reduce: aggregate,

summarize, filter or transform
sorted data

• Programmers can specify the
Map and Reduce functions

© 2022 Isam Mashhour Al Jawarneh & Luca Foschini

Traditional MapReduce examples (again)

Map (square, [1, 2, 3, 4])

1

2

3

4

1

4

9

16

Reduce (add, [1, 4, 9, 16])

30

1

4

9

16

© 2022 Isam Mashhour Al Jawarneh & Luca Foschini

Google MapReduce definition

• map (String key, String val) runs on each item in the set
• Input example: a set of files, with keys being file names and values being file

contents
• Keys & values can have different types: the programmer has to convert between

Strings and appropriate types inside map()
• Emits, i.e., outputs, (new-key, new-val) pairs
• Size of output set can be different from size of input set
• The runtime system aggregates the output of map by key
• reduce (String key, Iterator vals) runs for each unique key emitted by map()
• It is possible to have more values for one key
• Emits final output pairs (possibly smaller set than the intermediate sorted set)

© 2022 Isam Mashhour Al Jawarneh & Luca Foschini

Map & aggregation must finish before reduce can
start

© 2022 Isam Mashhour Al Jawarneh & Luca Foschini

Running a MapReduce program

• The final user fills in specification object:

• Input/output file names

• Optional tuning parameters
(e.g., size to split input/output into)

• The final user defines MapReduce function and passes it the specification object

• The runtime system calls map() and reduce()

• While the final user just has to specify the operations

© 2022 Isam Mashhour Al Jawarneh & Luca Foschini

Word Count Example

• map(String input_key, String input_value):

• // input_key: document name

• // input_value: document contents
for each word w in input_value:
EmitIntermediate(w, "1");

• reduce(String output_key,
Iterator intermediate_values):

• // output_key: a word

• // output_values: a list of counts
int result = 0;
for each v in intermediate_values:

result += ParseInt(v);
Emit(AsString(result));

© 2022 Isam Mashhour Al Jawarneh & Luca Foschini

Word Count Illustrated

• map(key=url, val=contents):
• For each word w in contents, emit (w, “1”)

• reduce(key=word, values=uniq_counts):
• Sum all “1”s in values list
• Emit result “(word, sum)”

see bob throw
see spot run

see 1
bob 1
run 1
see 1
spot 1
throw 1

bob 1
run 1
see 2
spot 1
throw 1

© 2022 Isam Mashhour Al Jawarneh & Luca Foschini

Many other applications

• Distributed grep
• map() emits a line if it matches a supplied pattern
• reduce() is an identity function; just emit same line

• Distributed sort
• map() extracts sorting key from record (file) and outputs (key, record) pairs
• reduce() is an identity function; just emit same pairs
• The actual sort is done automatically by runtime system

• Reverse web-link graph
• map() emits (target, source) pairs for each link to a target URL found in a file source
• reduce() emits pairs (target, list(source))

© 2022 Isam Mashhour Al Jawarneh & Luca Foschini

other applications

• Machine learning issues

• Google news clustering problems

• Extracting data + reporting popular queries (Zeitgeist)

• Extract properties of web pages for tests/products

• Processing satellite imagery data

• Graph computations

• Language model for machine translation

• Rewrite of Google Indexing Code in MapReduce

Size of one phase 3800 => 700 lines, over 5x drop

© 2022 Isam Mashhour Al Jawarneh & Luca Foschini

Implementation overview (at google)

• Environment:

• Large clusters of PCs connected with Gigabit links

• 4-8 GB RAM per machine, dual x86 processors

• Network bandwidth often significantly less than 1 GB/s

• Machine failures are common due to # machines

• GFS: distributed file system manages data

• Storage is provided by cheap IDE disks attached to machine

• Job scheduling system: jobs made up of tasks, scheduler assigns tasks to machines

• Implementation is a C++ library linked into user programs

© 2022 Isam Mashhour Al Jawarneh & Luca Foschini

Architecture example

© 2022 Isam Mashhour Al Jawarneh & Luca Foschini

Scheduling and execution

• One master, many workers
• Input data split into M map tasks (typically 64 MB in size)
• Reduce phase partitioned into R reduce tasks
• Tasks are assigned to workers dynamically
• Often: M=200,000; R=4000; workers=2000
• Master assigns each map task to a free worker
• Considers locality of data to worker when assigning a task
• Worker reads task input (often from local disk)
• Intermediate key/value pairs written to local disk, divided into R regions, and the

locations of the regions are passed to the master
• Master assigns each reduce task to a free worker

• Worker reads intermediate k/v pairs from map workers
• Worker applies user reduce operation to produce the output (stored in GFS)

© 2022 Isam Mashhour Al Jawarneh & Luca Foschini

Fault-Tolerance

• On master failure:

• State is checkpointed to GFS: new master recovers & continues

• On worker failure:

• Master detects failure via periodic heartbeats

• Both completed and in-progress map tasks on that worker should be re-
executed (→ output stored on local disk)

• Only in-progress reduce tasks on that worker should be re-executed (→
output stored in global file system)

• Robustness:

• Example: Lost 1600 of 1800 machines once, but success

© 2022 Isam Mashhour Al Jawarneh & Luca Foschini

Favouring Data Locality

• The goal is to preserve and to conserve network bandwidth

• In GFS, we know that data files are divided into 64 MB blocks and 3 copies of each are stored on
different machines

• Master program schedules map() tasks based on the location of these replicas:

• Put map() tasks physically on the same machine as one of the input replicas (or, at least on the
same rack/network switch)

• In this way, the machines can read input at local disk speed. Otherwise, rack switches would limit
read rate

© 2022 Isam Mashhour Al Jawarneh & Luca Foschini

backup Tasks

Problem: stragglers (i.e., slow workers in ending) significantly lengthen the completion time

• Other jobs may be consuming resources on machine

• Bad disks with soft errors (i.e., correctable) transfer data very slowly

• Other weird things: processor caches disabled at machine init

• Solution: Close to completion, spawn backup copies of the remaining in-progress tasks

• Whichever one finishes first, wins

• Additional cost: a few percent more resource usage

• Example: A sort program without backup was 44% longer

© 2022 Isam Mashhour Al Jawarneh & Luca Foschini

Example systems
Apache Hadoop, Flink, Storm, Spark, Kafka,

Cassandra and MongoDB

© 2022 Isam Mashhour Al Jawarneh & Luca Foschini

Batch Processing

© 2022 Isam Mashhour Al Jawarneh & Luca Foschini

Hadoop: a Java-based MapReduce

• Hadoop is an open source platform for MapReduce by Apache

• Started as open source MapReduce written in Java, but evolved to support other languages such
as Pig and Hive

• Hadoop common
set of utilities that support the other subprojects:

• FileSystem, RPC, and serialization libraries

• Several essential subprojects:

• Distributed file system (HDFS)

• MapReduce

• Yet Another Resource Negotiator (YARN) for cluster resource management

© 2022 Isam Mashhour Al Jawarneh & Luca Foschini

Hadoop MapReduce

• Its batch-processing component is called Hadoop
MapReduce

Data store

Event stream

Data batches Batch processor

output

Process persisted data batches on
regular scheduled basis

