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What makes an application data-
intensive
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Big data management 

• What all those are 
about?
• Big data management 

in distributed systems
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Driving forces for distributed data management

• Unprecedented voluminous amounts of big data are 
generated by big tech companies such as Google, 
Amazon, Twitter

• They need new tools, beyond the traditional server-
based deployments, that enable management of such 
data, at scale

• Mature open-source projects are preferred over in-house 
counterparts

• Network transfer capabilities are becoming faster, 
enabling parallelism to become the de facto standard
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Data-intensive applications
• What makes an application data-intensive

• Data is its primary challenge
• Data volume, complexity, speed of arrival & 

change
• Novel distributed computing tools have emerged 

for the storage and processing of such data
• Scalable distributed storage systems (e.g., 

MongoDB) and data processing (e.g., Apache 
Spark & Hadoop)

• Related technologies: message queues, caches, 
search indexes, frameworks for batch and 
stream processing
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This course
• We need a deep technical understanding of the big data technologies 

and 
• The trade-offs of design choices for domain-specific applications
• In this course, we are focusing on georeferenced big data 

management in distributed computing deployments
• It is true that the technology is rapidly changing

• However, enduring principles remain valid for all tools
• Understanding those principles helps us choose the right tool and add 

custom tools to improve its performance in a domain-specific direction
• A technological view of the landscape of tools for big data management

• With a domain-specific focus (spatial)
• With examples of successful frameworks and systems
• A deep preview of the internal building blocks 

• It is not about how systems work; it is more about why they work in a specific 
way

• Fundamental principles and trade-offs
• Design decisions
• Always in the scope of spatial big data
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What makes an application data-intensive

• Data is the main challenge (the dominating 
factor)
• Data size
• Complexity
• Uncertainty (speed at which data is changing)
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Data size

• To give you a sense of possible data sizes 
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Data-intensive examples

1) Searching the WWW

• As of May 2022, the estimated 
number of Web pages indexed by 
Google is circa 60 billion.

• Almost 70 petabytes (PBs) of data 
in only one Google BigTable

• To manage such a huge amount 
of data (storage & searching)

• Google built a custom file system 
and indexing methods

• Running in distributed 
deployments (computing clusters) 
consisting of thousands of 
machines

GB = Sorted on Google and Bing
BG = Sorted on Bing and Google

Image source
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Data-intensive examples (cont.)

2) Online applications 
• Online service providers manage and deliver big data to billions 

of users worldwide
• YouTube serves more than 1 billion page views daily

• Several petabytes
• Netflix stores several petabytes of data on Amazon’s EC2
• eBay multi-petabyte (users & event logs data)

3) Other businesses (telecommunication & banks)
• AT&T 

• Multi-petabytes of network daily data
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BIG  Chain 
supermarkets

BIGGER Smart 
Cities

The BIGGEST ever
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Scientific data are the biggest ever

• Phase 1– representing approximately 10% of the whole 
Square Kilometer Array (SKA) Telescope – will generate 
around 300 PB (petabytes) of data products every year

• This is ten times more than today’s biggest science 
experiments

• From tutorial titled: “Solving astrophysics mysteries with big 
data”

By : A/Melanie Johnston-Hollitt, Board of Directors, New 
Zealand
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Big Data & more

Information systems require a quality-aware vision that can organize the whole 
data lifecycle

5 V’s for new data processing 
and 
novel data treatment

• Volume of Data
• Variety of Data
• Velocity 
• Value
• Veracity

6 V’s also Data Dynamicity
• Variability
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Data-intensive domain 

• To make it clear the distinction of 
data-intensive from other domains

• Characteristics of data-intensive 
applications

• Manage multi-petabytes of data
• Distributed data coming from 

heterogeneous sources (requires 
fusion)

• Amenable to straightforward 
parallelization

• Challenges in distributed systems 
include

• Data management
• Fusion techniques
• Data distribution & querying
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Building blocks of data-intensive applications
• Common building blocks include:

• Data storage (database)
• Keeping the output of expensive operations (caching)
• Appropriately searching & filtering data (indexing)
• Processing data on-the-fly (stream processing)

• Unbounded stream of data instead of a batch of data points
• Crunching huge amount of static data (batch processing)

• Fixed pool of data that we will process to get a result

Data store

Event stream

Data batches Batch processor

outputLarge batches are 
processed on 
scheduled basis

Event stream Data stream events are processed 
in real time as they are being 
ingested by the system

Stream processor
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Challenges

• Several tools to choose from for various applications with 
varying requirements

• Indexing, caching , batch & stream processing may differ 
significantly across different frameworks

• Is single tool enough for satisfying the application requirements
• Do we need to combine functionalities from various tools

• How can we build efficient data-intensive applications?
• What tools have in common, what distinguishes a tool 

from others for a specific data-intensive workload
• What design decisions should be considered when 

building a specific data-intensive application
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Challenge: single tool does not fit all!

• Data-intensive applications are characterized by 
having wide-ranging demanding requirements that 
there is no such thing like “ single tool fits all”

• No single tool can meet the storage & processing 
requirements altogether

• One size does not fit all
• Different application workloads may require 

purpose-built systems
• Design tradeoffs decisions  performance 

tradeoffs

• Divide & conquer
• Divide the workload into tasks
• Run each task on a single tool
• Stitch single tools together to accomplish the big 

task
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Example data-intensive Application Scenario
• A mixed-workload scenario requiring 

at least
• Traffic Light Controller. Actuator decides to 

change lights consistently for ambulance to 
pass

• Smart Real-time Pathfinder. Interactive 
navigation map for ambulances and other 
vehicles

• Real-time Community Detector. Identify 
volunteers' communities in the surroundings of 
the patient

Combining tools to provide the 
service
Creating a special-purpose data-

intensive system by stitching together 
various general-purpose tools 
Batch & stream processing, scalable 

storage, and stream data ingestion
What guarantees we can assure by 

this combination? 

patient

Community 
volunteers

participatory healthcare
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Requirement for services

In distributed systems, while services must be correctly provided

A critical goal is the Quality of Service (QoS), in the sense of provisioning with 
some parameters and respecting some requirements

The QoS has many different meanings, because it is a very general quality 
indicator

It can stress response time, security, correctness, availability, confidence, user satisfaction, …

QoS goals (conflicting?) in the Old and the New World
• Old world: typically, main goals  reliability and enforced consistency 
• New world: scalability and availability matters most of all
Focus on extremely rapid response times: Amazon estimates that each millisecond of delay has 
a measurable impact on sales!
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Common desired guarantees

• Reliability
• The performance of the system is predictable in face of data 

load and volume
• Avoiding failures, such that the system continues providing the 

expected service

• Scalability
• Coping up with data loads. As data size grows, complexity and 

speed, system should adapt appropriately
• Hardware scalability. Overprovisioning resources, or
• Approximate Query Processing (AQP). Data reduction techniques.

• Maintainability
• The system should be adaptable in face of emerging scenarios



© 2022 Isam Mashhour Al Jawarneh & Luca Foschini

Scalability
• Load can be described in several ways

• Number of requests per second for a specific service
• Ratio of reads to writes
• Number of users active simultaneously

• Design choices are affected by the average loads

• Performance
• How the system is behaving when load changes
• If we need the to maintain the performance, what choice should we 

make
• Hardware scalability or AQP

• Measurements
• Throughput

• Number of records that can be processed per second
• Total time to run on a given data of specific size
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Response time
• Response time

• The time between sending request and 
receiving response

• Actual request processing time (i.e., service 
time) plus network & queueing delays

• May differ for different requests, need to be 
measured for each workload

• We normally report the average response 
time, percentiles , or median (50th percentile)

• Mean does not show the outliers
• Percentiles are preferred
• Sorting response times in decreasing 

order, the median is the halfway point

• Specified in a service level objective (SLO) or 
service level agreement (SLA)

• e.g., median response time less than 100 MS, 
95th percentile under 1 second
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How response time is affected in parallel computing 
systems

• The slowest call dominates 
the overall response time

• Load balancing is key (later 
discussion)

Worker 
2

Worker 
1

Worker 
3

Worker 
4

Worker 
5

request

10 ms 15 ms 50 ms 18 ms 12 ms

12 ms
18 ms

50 ms
15 ms

10 ms

request

response



© 2022 Isam Mashhour Al Jawarneh & Luca Foschini

Coping up with load fluctuations
1) Scaling

• Up (vertical). Deploying more powerful single beefed-up servers
• Out (horizontal, shared-nothing architectures). Distributing the load to 

multiple machines
• Design decision

• What kinds of operations are common
• Stateless (parallelization is straightforward), stateful (additional 

complexities are facing distributed architectures)
• No single architecture is the best

• Reading & writing loads (access patterns),
• Data complexity
• Response time requirements

2) Approximate Query Processing (AQP)
• Reduce data size with techniques that guarantee QoS (accuracy, response time, 

etc.,) to some extent
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Coping up with load fluctuations 
(cont.)
• Vertical Scaling

• Increasing single server capacity
• More powerful CPU, more RAM, more storage space
• Could easily be hindered by limitations in technology

• Horizontal Scaling
• Dividing data and load to multiple servers
• Each machine handles partial set of the data workload, 

providing much better efficiency than a single high-capacity 
server

• Increased infrastructure complexity and maintenance 
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Behind the Woods: support for…

To provide QoS distributed systems have to support some coverage of properties 
and functions

• Replication: usage of multiple copies of resources
• Grouping: keeping together different copies and behavior 
• Simplified delivery: new tools and technologies to fasten development & 

deployment of complex applications
• Automated management: infrastructures taking care of management burden 

with minimal human intervention
• Batch data processing: storage/processing of massive amounts of data, such 

as for Google Web indexing
• Streaming data: dealing with information series coming from a set of grouped 

info, such as a video, sensors, etc.
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Anatomy of distributed model solutions 
for data-intensive problems

Processing pipelines & stages
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Typical architecture of data-intensive applications 
• Common stages

• Data collection
• Bringing data from sources (probably 

heterogeneous) to data-intensive applications
• Data transformation

• Reduction. transformation of data into a simplified 
form,
which is more amenable to downstream 
processing

• Normally single-pass for scalability
• Sampling, data pruning, etc., 

• Data storage
• Analysis

• Discover patterns in the data
• and Visualization

• Visualizing the output of data intensive applications, helping 
the user make informative decisions
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Data-intensive processing pipeline 
• Scientific data-intensive problems 

need processing pipelines
• Collecting the data
• Reducing it size and performing other 

transformations (sampling, 
summarizations, aggregations, indexing, 
etc.,)

• Applying advanced specialized 
algorithms to analyze & process the 
midway data, resulting in human-
readable knowledge

• Normally requires data parallelism 
(distributed computing clusters or 
HPC)

• User visualize the data in informative 
ways, investigating and validating 
the outputs 
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Data Transformation Model

The main workflow is to move data from source to sink via a pipeline easy to map and describe

New support architectures with novel design principles based on quality-aware services 
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An example: Netflix

Personal service to play movies on demand

User Perspective

Server Netflix.com

Simple design?  
Netflix owns the data center and content distribution infrastructure

BUT, in reality….
Netflix owns neither a data center nor a distribution infrastructure
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Movies: 
Master copies

CDN Companies

Content 
Delivery 
Networks

Netflix: the complex picture
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storage

computing

DBMS

memory

Amazon Web Services  (WS) Elastic 
Cloud Computing (EC2) resources
• Leased and Paid-per-use
• Eased management (e.g., 

automated load balancing)

Netflix & AWS EC2 in a Nutshell
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Example processing & analysis in data 
intensive applications

• Clustering (e.g., DBSCAN-MR, for DBSCAN 
MapReduce)

• Grouping data into clusters, such that same-
cluster items are more similar than items in 
other clusters

• Similarity is a domain-specific measurement
• e.g., spatial applications, nearby spatial 

objects in real geometries form clusters

• Search (proximity search)
• Finding objects with specific attribute values
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Parallelism is essential

• Reduced data size does not guarantee the 
ability of efficient processing

• Data parallelism is often involved, using computing 
clusters of machines

• Data parallelism simply implies partitioning 
data to multiple portions (MapReduce is the 
baseline)

• Process each portion independently & concurrently 
across multiple computing machines in a cluster

• Combine the sub results to produce the output

• Google & Microsoft multi-petabyte data 
centers each might contain 100K low-cost 
commodity hardware nodes
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Example programming model: MapReduce

Programming paradigm for 
computing and aggregating large 
amounts of data
- Mainly abstractions for data-

intensive applications to exploit data 
distributed in computing clusters

- Distributes data & processing to 
computing nodes of a cluster

- Then process the data locally at each 
computing node independently & in 
parallel

- Then, it combines the local results to 
form the output
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Supporting infrastructures & enabling 
technologies for data intensive 

applications
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Clusters in public Cloud, private Cloud, 
virtual machines, and virtualization of 

clusters
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Cloud Revolution…

Cloud is a buzzword to be used in advertising and it is sometimes depicted as a 
revolution

The are many books about Cloud as a revolutionary technology

In general terms, there is no solution of continuity both under an organization and 
a technical perspective
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Clouds are Cheaper… 
and Winning…

Range in size from “edge” facilities to 
megascale

Scale economies

Approximate costs for a small size 
center (1K servers) and a larger, 50K 
server center

Each data center is 
11.5 times 

the size of a football field

Technology Cost in small-sized
Data Center

Cost in Large Data 
Center

Cloud Advantage

Network $95 per Mbps/
month

$13 per Mbps/
month

7.1

Storage $2.20 per GB/
month

$0.40 per GB/
month

5.7

Administration ~140 servers/
Administrator

>1000 Servers/
Administrator

7.1
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Cloud architectural comparison
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National Institute of Standard and Technology  NIST

The NIST Cloud Definition Framework
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What is a Cloud

One Cloud is capable of providing IT resources ‘as a Service’

One Cloud is an IT service delivered to users that have:
• A user interface that makes the infrastructure underlying the service 

transparent to the user
• Massive scalability
• Service-oriented management architecture
• Reduced incremental management costs when additional IT resources are 

added

• Services are available via Web or REST interfaces
• Other user requirements possible based on

geographical preferences, localization constraints, …



© 2022 Isam Mashhour Al Jawarneh & Luca Foschini

Partial landscape of Cloud-based systems

H. Zhang, G. Chen, B. C. Ooi, K. L. Tan and M. Zhang, "In-Memory Big Data Management and Processing: A Survey," in IEEE Transactions on 
Knowledge and Data Engineering, vol. 27, no. 7, pp. 1920-1948, July 1 2015.
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Distributed architectures for big data 
management
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Reference architectures for storage and 
processing of big data, such as Lambda 

architecture
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Lambda Architecture

• Challenges associated with 
managing mixed streaming big 
data workloads have 
motivated the emergence of 
novel dynamic architectural 
patterns such as the Lambda 
architecture 

• The Lambda architecture 
employs real-time stream 
processing for timely 
approximate results and batch 
processing for delayed 
accurate results
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MongoDB OR
Cassandra

Tweets Event 
stream

Data batches Batch processor

Top daily 
topics

Persisting each 
tweet for delayed 
processing

Tweets Event 
stream

Real-time processing of trending 
topics (processing each coming 
tweet)

Stream processor

Kafka
cluster OR 
RabbitMQ

Batch storage

Spark OR
HadoopBatch layer

Speed layer

Generating daily topics 
report from persisted 
batches of tweets 

Trending 
real-time 

topicsSpark Streaming, 
Flink, Storm
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Key tasks in distributed management of 
big data

Partitioning, rebalancing & serialization
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Data partitioning
• Distributing partitions of data over 

several processing (i.e., worker nodes) or 
storage elements in a parallel
computing environment (i.e., Cloud)

• Processing is accomplished 
simultaneously by each processor 
instance on the corresponding 
partition

• One of the reasons to distribute data 
loads to multiple machines is the desire 
for scalability

• Read & write loads grow significantly
• Large datasets & query loads are 

distributed
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Data partitioning (cont.)

• Known as sharding in MongoDB, 
Elasticsearch, and SolrCloud, region in 
HBase, a tablet in Bigtable, a vnode in 
Cassandra, and a vBucket in Couchbase

• Shared-nothing architectures (scaling out 
or horizontal scaling) are preferred over 
shared-memory counterparts for data-
intensive applications

• A single machine (or virtual machine) 
running the database software is known 
as a node

• Each node uses its CPUs, RAM, and disks 
independently Sharding in MongoDB
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Load balancing is essential

• The main goal of partitioning is to evenly distribute the data & query loads 
across parallelly connected nodes

• This is known as load balancing
• If data is distributed evenly, then in a perfect setting, it means sending the 

same amount of data to each node
• In theory, 100 nodes can handle 100 times as much data as a single 

node can handle, also having a collective read/write throughput that 
is 100 times of that of a single node
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Load balancing is essential (cont.)

• On the other hand,
• If data is unevenly distributed, then some nodes are overlooked, 

having less data
• While others having much more data, to the point that they 

become the bottleneck of storage & processing. Those nodes 
are typically known as hotspots

• In this case, the benefits of partitioning easily diminish
• Imagine a worst case where all data load ends up in one 

partition, while other partitions are will be idle
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Load balancing (smart city scenario)

Is load balancing alone sufficient?!
Only load balancing = shuffling (huge toll) for co-location queries

In Spark join requires 
data to reside on the 
same partition
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Partitioning approaches
• The simplest is randomly & evenly assigning records to nodes

• Achieves load balancing, however,
• Read queries need brute force full scan to find specific 

records
• We have no knowledge where specific records reside

• Partitioning by keys
• Key range partitioning

• Assign values within a specific key range to same partitions
• If data is skewed (few keys have more data than others), choose 

the range wisely in such a way that you also preserve (to some 
extent) the load balancing property

• Sorting keys in each partition speeds up the range queries
• Bigtable, Hbase, and MongoDB
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Key range partitioning challenges

Node 1

Node 2

Sensor# date timestamp PM10
1 2022-01-01 20220101-000000 5.3

1 2022-01-01 20220101-000010 4.2

1 2022-01-01 20220101-000020 2.2
2 2022-01-01 20220101-000000 4.7

2 2022-01-01 20220101-000010 7.2

2 2022-01-01 20220101-000020 9.1

Partition key

Time unit 
range 
readings

Since the key is a timestamp, partitions correspond to time ranges, which leads to 
overloading specific partitions by writes (on-the-fly writes as data coming from 
sensors)  leads to hotspots
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Better design – key range partitioning

Node 1

Node 2

Sensor
#

timestamp date PM10

1 20220101-000000 2022-01-01 5.3

1 20220101-000010 2022-01-01 4.2

1 20220101-000020 2022-01-01 2.2

2 20220101-000000 2022-01-01 4.7

2 20220101-000010 2022-01-01 7.2

2 20220101-000020 2022-01-01 9.1

Partition key

Time unit 
range 
readings

Prefix each timestamp with the sensor ID such that the partitioning is first by sensor ID and then by 
timestamp – load balancing is then achieved (to some extent), assuming that all sensors sending 
data at regular basis. 
Is something else preserved here?

data co-locality, a desired property for proximity scans readings from same sensors 
ends up in same partitions
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Hash key partitioning

• Avoiding skewness & hotspots requires other schemes for partitioning data
• Here where hash key partitioning comes in!
• Using a hash function to specify the partition for a specific key
• Good functions transform skewed data to uniformly distributed counterpart

• Cassandra and MongoDB use MD5
• Assign range of hashes to each partition

• Transform key using the hash function, look up the corresponding partition having a hash 
range where the hashed key can be assigned and assign it to that partition.

• Good for load balancing,
• and (depending on the application domain) for data co-locality

• True only for some domains such as spatial data, where co-locality can be preserved by 
encoding schemes such as geohash (discussed in part 3)

• However, in general purpose domains, co-locality is typically not preserved by hashing, so 
it negatively affects range scans (example, MongoDB range scans all partitions if hash-
based sharding is enabled!)
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Data skewness & partitioning challenge
• Some data in specific domains is highly skewed

• Skewness is the asymmetry of a distribution of a variable’s value around 
its mean

• Some keys in the data may have more frequency than others
• Hashing in this case does not help load balancing as few keys may 

dominate the distribution, and will be routed to same partitions, turning 
them into hotspots

• As this is domain-specific problem
• In most cases, it can not be automatically mitigated at the system level
• It, otherwise, need to be managed at the application level

• More logistics handling 

Mobility data. NYC taxicab dataset is highly skewed
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Secondary indexes & partitioning

• Schemes discussed so far work very well for key/value 
data, where data is indexed with a single key

• For example, the location in mobility data is a sufficient primary 
index as most spatial queries ask location-driven questions 
(proximity, range, kNN, spatial join, etc.,. To be discussed in Part 2 
of the course)

• But what if we have a secondary index?!
• Frequent scans search for values of specific attributes, beyond the value 

of a primary key!
• We need to take the secondary key into consideration for proper 

partitioning
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Challenge of secondary indexes in partitioning

454  {type: “laptop”, make: “DELL”, RAM: “32”}
222  {type: “laptop”, make: “ACER”, RAM: “64”}
764  {type: “desktop”, make: “DELL”, RAM: “128”}

897  {type: “laptop”, make: “DELL”, RAM: “32”}
111  {type: “desktop”, make: “ACER”, RAM: “64”}
444  {type: “laptop”, make: “Samsung”, RAM: “64”}

Make : DELL  [454,764]
Make : ACER  [222]

Make : DELL  [897]
Make : ACER  [111]
Make : Samsung [444]

Query

Scatter/gather

All computer types where maker is “DELL” 

Partition 1 Partition 2

Primary index (global) Primary index (global)

Secondary  index(local) Secondary  index (local)
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Possible solution

454  {type: “laptop”, make: “DELL”, RAM: “32”}
222  {type: “laptop”, make: “ACER”, RAM: “64”}
764  {type: “desktop”, make: “DELL”, RAM: “128”}

897  {type: “laptop”, make: “DELL”, RAM: “32”}
111  {type: “desktop”, make: “ACER”, RAM: “64”}
444  {type: “laptop”, make: “Samsung”, RAM: “64”}

Make : DELL  [454,764,897]
Make : ACER  [222]

Make : ACER  [111]
Make : Samsung [444]

Query

targeted

All computer types where maker is “DELL” 

Partition 1 Partition 2

Primary index Primary index

Secondary  index Secondary  index
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Rebalancing
• Things change as time ticks forward

• More CPU is needed as query throughput changes (read/write 
throughputs)

• Data size increases, adding more RAM and disk storage is paramount
• Machines may fail or need to reconfigured (downtime is unavoidable)

• Rebalancing means moving data or query requests between 
cluster nodes

• Requirements
• Load should be evenly distributed after rebalancing
• Reads/writes should continue operating while in the rebalancing phase
• Moving what is necessary only, to minimize the IO and network 

overheads
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Rebalancing approaches
• Two approaches

• Approaches that partition in a way proportional 
to dataset size

• Fixed number of partitions
• With hash key partitioning

• Dynamic partitioning
• With key range partitioning

• Approaches that partition in a way proportional 
to cluster size (number of nodes)

• Fixed number of partitions per node
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Rebalancing approaches
• For hash key partitioning

• Using fixed number of partitions is preferred over other 
assignments (such as using the mod operation over the hash key)

• If we use “mod” over hash key, then every time we add 
partitions or nodes, all records need to be redistributed 
because the operation (hash code % value) would result in a 
new value (partition number, thus another node), expensive

• Alternatively, having a fixed number of partitions (say 100) 
means that adding nodes does not affect the intra-partition 
data

• What then needs to be redistributed is full partitions, not 
record-by-record

• Used in Elasticsearch & Couchbase
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Rebalancing approaches (cont.)

• For key range partitioning
• Fixed number of partitions is prone to unbalanced loads
• Some partitions would have more data (hotspots) than others (idle)

• Partition dynamically
• Build partitions as data arrive

• Adaptable partitioning that senses the data volume
• When the size exceeds the threshold, split the partition and send the new 

partition to another node if necessary
• When the size shrinks, combine adjacent partitions
• However, the start is an issue

• With single partition, all writes, and reads are handled by a single node
• Until the partition size reaches the limit, only then parallelization benefits 

come on board
• Common in MongoDB, RethinkDB & HBase
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Cluster size-driven partitioning

• Fixed number of partitions per node of the cluster
• Adding nodes

• Split partitions randomly so that the number of partitions per 
node for the new configuration matches the preset configuration

• Move some of the split partitions to the new nodes to achieve 
the required number of partitions per node (approximately)

• Adopted in Cassandra
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Human-in-the-loop (HITL) for rebalancing 

• Rebalancing could be very expensive
• IO and network transfer overheads
• A mistakenly rebalancing decision with a fake 

automatic failure detection can bring the system 
into halt!

• So, HITL is preferred
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Query forwarding

• Also known as query request routing
• Which nodes to visit for answering a specific query

• Various approaches

• Random
• Routers
• Client-side

• How the router knows about the partition assignment?
• coordination service such as Zookeeper to keep track of this kind cluster 

metadata
• HBase, SolrCloud, and Kafka also use ZooKeeper
• MongoDB relies on its own config server implementation and mongos

daemons as the routing tier. Also, Couchbase utilize a similar approach with 
routing tier known as moxi

• Cassandra uses Gossip protocol random approach
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Query forwarding approaches

Query

Node 0 Node 1 Node 2

Routing information

“DELL”

Query

Node 0 Node 1 Node 2

“DELL”

Query

Node 0 Node 1 Node 2

“DELL”

router

1 2 3
Retrieve “DELL” Retrieve “DELL” Retrieve “DELL”

Random node 
selection

“DELL” on Node 2

“DELL” on Node 2

Connect to target 
nodes directly
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Coordination service - Zookeeper

Node 0 Node 1 Node 2

“DELL”

router

“DELL” on Node 0

Key range partition Node IP address
A – D Partition 0 Node 0 10.10.10.100

E – H Partition 1 Node 0 10.10.10.100

I – L Partition 2 Node 1 10.10.10.101

M – O Partition 3 Node 1 10.10.10.101

Q – S Partition 4 Node 2 10.10.10.102

T – W Partition 5 Node 2 10.10.10.102

X - Z Partition 6 Node 0 10.10.10.100

ZooKeeper

Query Retrieve “DELL”

Routing
information

mapping of partitions to nodes
subscribe
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Cloud data management solutions
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Data models & query languages 
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Data models layers

• Layering one data 
model on top of 
another

• For each layer, the 
key question is how 
it is represented in 
terms of the next-
lower layer

• each layer hides
the complexity of 
the layers below it 
by providing a 
clean data model

Objects (sensors, 
cars)

Application 
developer view

general-purpose data 
model (JSON or XML)

Logical storage 
view

bytes in memory, on disk, 
or

on a network. 
Physical storage 

view

Hardware level
Electric currents, light 

pulses, magnetic fields
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Choosing a data model
• Many kinds of data models
• Data model in a layer affects the performance of 

the software on a top layer
• Select a data model that helps the performance 

of the data application
• How to choose

• Easy to use against hard usage
• Supported operations and how fast
• Supported data transformation
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Challenges in choosing data models

• The key challenge in selecting data model is the ability to 
strike the plausible balance of the needs of the 
application, 

• the performance characteristics of the database engine, and 
the data retrieval patterns

• When designing data models, we always consider 
• the usage of the data by the underlying application (i.e., queries, 

updates, and processing of the data) 
• In addition to the inherent structure of the data
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Relational Databases Example
Example SQL queries 
1. SELECT zipcode FROM users WHERE name = “Bob”;
2. SELECT url FROM blog WHERE id = 3;
3. SELECT users.zipcode, blog.num_posts FROM users JOIN blog ON users.blog_url = blog.url;

user_id name zipcode blog_url blog_id

101 Alice 12345 alice.net 1

422 Charlie 45783 charlie.com 2

555 Bob 99910 bob.bloogspot
.com

3

Users Tables

Primary keys

id url last_updat
ed

num_posts

1 alice.net 5/2/14 332

2 bob.bloogspot
.com

4/2/13 10003

555 charlie.com 6/15/14 7

Blog Tables

Foreign keys
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Mismatch with today workloads

Data are extremely large and unstructured

Lots of random reads and writes

Sometimes write-heavy

Foreign keys rarely needed

Joins rare

Typically, not regular queries and sometimes very forecastable (so you can 
prepare for them)

In other terms, you can prepare data for the usage you want to optimize
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Requirement of today workloads

• Speed in answering

• No Single point of Failure (SPoF)

• Low TCO (Total Cost of Operation) or efficiency

• Fewer system administrators

• Incremental Scalability

• Scale out, not up
• What?



© 2022 Isam Mashhour Al Jawarneh & Luca Foschini

Scale out, not scale out

Scale up => grow your cluster capacity by replacing more powerful machines 
the so-called vertical scalability
• Traditional approach
• Not cost-effective, as you are buying above the sweet spot on the price curve
• and you need to replace machines often

Scale out => incrementally grow your cluster capacity by adding more COTS 
machines (Components Off The Shelf) 
the so-called horizontal scalability
• Cheaper and more effective
• Over a long duration, phase in a few newer (faster) machines as you phase out a few older 

machines
• Used by most companies who run datacenters and clouds today
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Key-value/NoSQL Data Model

NoSQL = “Not only SQL”
Necessary API operations: get(key) and put(key, value);
• And some extended operations, e.g., use of MapReduce in MongoDB

Tables
• Similar to RDBMS tables, but they … 
• Are unstructured: do not have schemas

Some columns may be missing from some rows

• Do not always support joins nor have foreign keys
• Can have index tables, just like RDBMSs

“Table” in HBase 
“Collection” in MongoDB
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Key-value/NoSQL Data Model 
Unstructured

Columns Missing of some Rows

No schema imposed

No foreign keys

Joins may not be supported

user_id name zipcode blog_url

101 Alice 12345 alice.net

422 Charl
ie

charlie.com

555 Bob 99910 bob.bloogspot
.com

id url last_updated num_posts

1 alice.net 5/2/14 332

2 bob.bloogspot
.com

10003

55
5

chalie.com 6/15/14 7

Key Value

Key Value
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Column-Oriented Storage

NoSQL systems can use column-oriented storage
RDBMSs store an entire row together (on a disk)
NoSQL systems typically store a column together (also a group of columns)
• Entries within a column are indexed and easy to locate, given a key (and vice-

versa)

Why?
• Range searches within a column are fast since you do not need to fetch the 

entire database
e.g., Get me all the blog_ids from the blog table that were updated within the past month;

Search in the the last_updated column, fetch corresponding blog_id column, without 
fetching the other columns
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MongoDB

MongoDB is Document-oriented NoSQL tool

Open source NoSQL DB

• In memory access to data

• Native replications toward reliability and high availability (CAP)

• Collection partitioning by using sharding key so to keep the information fast 
available and also replicated 

• Designed in C++
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Relational Model Concepts (cont’d.)

• Tables (relations), rows, columns
• Example: list of employees, containing their ID, name and 

phone
• Solution:

ID Name phone
1 Tony 999
2 Mark 888
3 Lisa 777

EMPLOYEE

Relation Attributes 
(columns)

Rows 
(tuples)
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Keys (cont’d.)
Less storage space is required!

ID name phone
2 Mark 888
1 Tony 999
3 Lisa 777
4 Tom NULL

employeeID deptID
2 11
2 22
3 22
4 11

EMPLOYEE

WORKS_FOR

ID name
11 marketing
22 IT
33 PR
44 communication

DEPARTMENT

Looks better!
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Why not 
relational model

• Requires costly join
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NoSQL models

• JSON (e.g., MongoDB )
• better locality than the multi-table schema

• No join is required (single query), read 
performance

• support for joins is often weak
• Joins can be performed in the application 

layer

• Schema-less (schema flexibility)
• schema-on-read Vs. schema-on-write

• closer to the data structures used by the 
application

• Limitations
• Reading nested items
• Many-many and many-one relationships
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Data encoding 
Serialization &  marshalling
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Data representation

• In-memory
• Objects, structs, lists, arrays, hash tables, trees
• Using pointers to speed up access 

• Disk-resident & cross-network 
• Sequence of bytes (e.g., JSON)
• Pointers diminish at this stage, different data representation

• Translation between in-memory and disk-resident
representations is required

• Encoding (also goes by other names (serialization or marshalling)
• The opposite process is decoding (parsing, deserialization, 

unmarshalling) 
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Encoding models
• Language specific

• Examples
• Java Serializable
• Python pickle
• Kryo for Java (3rd party)

• Tied to specific language, reading in other languages requires taking care of additional 
logistics

• JSON & XML
• Standardized encodings textual format that can be written and read by many programming 

languages
• JSON is simpler
• CSV is another popular option
• Schema-less (schema-on-read)
• BSON is a binary encoding variant of JSON, requires less space 
• Avro is another binary encoding

• Uses a schema to specify the structure of the data being encoded
• The most compact of all the encodings we have seen

• Omit field names from the encoded data

• JSON is a very viable choice for cloud data management
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Cloud programming models
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Batch processing models
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Data processing in today large clusters

• Engineers can focus only on the application logic and parallel tasks, 
without the hassle of dealing with scheduling, fault-tolerance, and 
synchronization

• MapReduce is a programming framework that provides

• High-level API to specify parallel tasks

• Runtime system that takes care of

• Automatic parallelization & scheduling

• Load balancing

• Fault tolerance

• I/O scheduling

• Monitoring & status updates

• Everything runs on top of GFS (the distributed file system)
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User Benefits

• Automatize everything – for useful special-purpose behavior
in two steps of complementary operations

• Based on abstract black box approach

• Huge speedups in programming/prototyping
«it makes it possible to write a simple program and run it efficiently on a thousand machines in a half hour»

• Programmers can exploit quite easily very large amounts of resources

• Including users with no experience in distributed / parallel systems
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Traditional MapReduce definitions

• Statements that go back to functional languages (such as LISP, Scheme) as a sequence of two steps for parallel 
exploration and results (Map and Reduce).

• Also in other programming languages: Map/Reduce in Python, Map in Perl

• Map (distribution phase)
1. Input: a list of data and one function
2. Execution: the function is applied to each list item
3. Result: a new list with all the results of the function

• Reduce (result harvesting phase)
1. Input: a list and one function
2. Execution: the function combines/aggregates the list items
3. Result: one new final item
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What is MapReduce in a nutshell

• The terms are borrowed from Functional Languages (e.g., Lisp)

• Sum of squares:

• (map square ‘(1 2 3 4)) => Output: (1 4 9 16)

[processes each record sequentially and independently]

• (reduce + ‘(1 4 9 16)) => (+ 16 (+ 9 (+ 4 1) ) ) => Output: 30

[processes set of all records in batches]

• Let us consider a sample application: Wordcount

You are given a huge dataset (e.g., Wikipedia dump – or  all of Shakespeare’s works) and asked to list the count 
for each of the words in any of the searched documents
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Map

• Extensively apply the function
• Process all single records to 

generate intermediate 
key/value pairs.

Welcome Everyone
Hello Everyone

Input <filename, file text>

Welcome 1
Everyone 1 
Hello        1
Everyone 1 

Key Value
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Map

• In parallel process individual 
records to generate 
intermediate key/value pairs

Welcome Everyone
Hello Everyone

Welcome 1
Everyone 1 
Hello        1
Everyone 1 

Input <filename, file text>

Key Value
MAP TASK 1

MAP TASK 2
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Map

• In parallel process a 
large number of  
individual records to 
generate intermediate 
key/value pairs

Welcome Everyone
Hello Everyone

Welcome 1

Everyone 1 

Hello 1

Everyone 1

Why 1

Are 1

You 1

Here 1

…….Input <filename, file text>

MAP 
TASK
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Reduce

• Collect the whole 
information

• Reduce processes and 
merges all intermediate 
values associated per key

Welcome 1

Everyone 1 

Hello 1

Everyone 1 

Everyone 2 
Hello 1
Welcome 1

Key Value
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Reduce

• Each key assigned to one Reduce
• In parallel processes and merges all intermediate values by 

partitioning keys
• Popular splitting: Hash partitioning, such as key is assigned to 

– reduce # = hash(key)%number of reduce tasks

Welcome 1

Everyone 1 

Hello 1

Everyone 1 

Everyone 2 

Hello 1

Welcome 1

REDUCE TASK 1

REDUCE TASK 2
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MapReduce: a deployment view 

• Read many chunks of 
distributed data (no data 
dependencies)

• Map: extract something from 
each chunk of data

• Shuffle and sort
• Reduce: aggregate, 

summarize, filter or transform 
sorted data

• Programmers can specify the 
Map and Reduce functions
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Traditional MapReduce examples (again)

Map (square, [1, 2, 3, 4])

1

2

3

4

1

4

9

16

Reduce (add, [1, 4, 9, 16])

30

1

4

9

16
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Google MapReduce definition

• map (String key, String val) runs on each item in the set
• Input example: a set of files, with keys being file names and values being file 

contents
• Keys & values can have different types: the programmer has to convert between 

Strings and appropriate types inside map() 
• Emits, i.e., outputs, (new-key, new-val) pairs
• Size of output set can be different from size of input set
• The runtime system aggregates the output of map by key
• reduce (String key, Iterator vals) runs for each unique key emitted by map()
• It is possible to have more values for one key
• Emits final output pairs (possibly smaller set than the intermediate sorted set)
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Map & aggregation must finish before reduce can 
start
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Running a MapReduce program

• The final user fills in specification object:

• Input/output file names

• Optional tuning parameters 
(e.g., size to split input/output into)

• The final user defines MapReduce function and passes it the specification object

• The runtime system calls map() and reduce()

• While the final user just has to specify the operations
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Word Count Example

• map(String input_key, String input_value): 

• // input_key: document name 

• // input_value: document contents 
for each word w in input_value: 
EmitIntermediate(w, "1"); 

• reduce(String output_key, 
Iterator intermediate_values): 

• // output_key: a word 

• // output_values: a list of counts 
int result = 0; 
for each v in intermediate_values: 

result += ParseInt(v); 
Emit(AsString(result));
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Word Count Illustrated

• map(key=url, val=contents):
• For each word w in contents, emit (w, “1”)

• reduce(key=word, values=uniq_counts):
• Sum all “1”s in values list
• Emit result “(word, sum)”

see bob throw
see spot run

see 1
bob 1 
run 1
see 1
spot 1
throw 1

bob 1 
run 1
see 2
spot 1
throw 1
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Many other applications

• Distributed grep
• map() emits a line if it matches a supplied pattern
• reduce() is an identity function; just emit same line

• Distributed sort
• map() extracts sorting key from record (file) and outputs (key, record) pairs
• reduce() is an identity function; just emit same pairs
• The actual sort is done automatically by runtime system

• Reverse web-link graph
• map() emits (target, source) pairs for each link to a target URL found in a file source
• reduce() emits pairs (target, list(source))
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other applications

• Machine learning issues

• Google news clustering problems

• Extracting data + reporting popular queries (Zeitgeist)

• Extract properties of web pages for tests/products

• Processing satellite imagery data

• Graph computations

• Language model for machine translation

• Rewrite of Google Indexing Code in MapReduce

Size of one phase 3800 => 700 lines, over 5x drop
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Implementation overview (at google)

• Environment:

• Large clusters of PCs connected with Gigabit links 

• 4-8 GB RAM per machine, dual x86 processors

• Network bandwidth often significantly less than 1 GB/s

• Machine failures are common due to # machines

• GFS: distributed file system manages data

• Storage is provided by cheap IDE disks attached to machine

• Job scheduling system: jobs made up of tasks, scheduler assigns tasks to machines

• Implementation is a C++ library linked into user programs 
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Architecture example
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Scheduling and execution

• One master, many workers
• Input data split into M map tasks (typically 64 MB in size)
• Reduce phase partitioned into R reduce tasks
• Tasks are assigned to workers dynamically
• Often: M=200,000; R=4000; workers=2000
• Master assigns each map task to a free worker
• Considers locality of data to worker when assigning a task
• Worker reads task input (often from local disk)
• Intermediate key/value pairs written to local disk, divided into R regions, and the 

locations of the regions are passed to the master
• Master assigns each reduce task to a free worker

• Worker reads intermediate k/v pairs from map workers
• Worker applies user reduce operation to produce the output (stored in GFS)
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Fault-Tolerance

• On master failure:

• State is checkpointed to GFS: new master recovers & continues

• On worker failure:

• Master detects failure via periodic heartbeats

• Both completed and in-progress map tasks on that worker should be re-
executed (→ output stored on local disk)

• Only in-progress reduce tasks on that worker should be re-executed (→ 
output stored in global file system)

• Robustness:

• Example: Lost 1600 of 1800 machines once, but success
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Favouring Data Locality

• The goal is to preserve and to conserve network bandwidth

• In GFS, we know that data files are divided into 64 MB blocks and 3 copies of each are stored on 
different machines

• Master program schedules map() tasks based on the location of these replicas:

• Put map() tasks physically on the same machine as one of the input replicas (or, at least on the 
same rack/network switch)

• In this way, the machines can read input at local disk speed. Otherwise, rack switches would limit 
read rate



© 2022 Isam Mashhour Al Jawarneh & Luca Foschini

backup Tasks

Problem: stragglers (i.e., slow workers in ending) significantly lengthen the completion time

• Other jobs may be consuming resources on machine

• Bad disks with soft errors (i.e., correctable) transfer data very slowly

• Other weird things: processor caches disabled at machine init

• Solution: Close to completion, spawn backup copies of the remaining in-progress tasks

• Whichever one finishes first, wins

• Additional cost: a few percent more resource usage

• Example: A sort program without backup was 44% longer
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Example systems
Apache Hadoop, Flink, Storm, Spark, Kafka, 

Cassandra and MongoDB
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Batch Processing
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Hadoop: a Java-based MapReduce

• Hadoop is an open source platform for MapReduce by Apache

• Started as open source MapReduce written in Java, but evolved to support other languages such 
as Pig and Hive

• Hadoop common
set of utilities that support the other subprojects:

• FileSystem, RPC, and serialization libraries

• Several essential subprojects:

• Distributed file system (HDFS)

• MapReduce

• Yet Another Resource Negotiator (YARN) for cluster resource management
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Hadoop MapReduce

• Its batch-processing component is called Hadoop 
MapReduce

Data store

Event stream

Data batches Batch processor

output

Process persisted data batches on 
regular scheduled basis


