
Designing Distributed Geospatial
Data-Intensive Applications

Ph.D. Course, 2022

Instructors:

Prof. Luca Foschini, Associate Professor &
Dr. Isam Mashhour Al Jawarneh, Postdoctoral Research Fellow

{isam.aljawarneh3, Luca.foschini}@unibo.it
Department of Computer Science and Engineering (DISI), Università di Bologna

Part 1
section 2
Introduction

19th July 2022

Spark

• It is not a modified version of Hadoop but a separate, fast, MapReduce-like engine:

• New optimized version of Hadoop
• In-memory data storage for very fast iterative queries
• General execution of graphs and powerful optimizations
• Up to 40 times faster than Hadoop

• Compatible with Hadoop storage APIs
• Can read/write to any Hadoop-supported system, including HDFS, HBase, SequenceFiles, etc.

Why Spark?

• MapReduce greatly simplified big data analysis
• But when it becomes popular, users wanted more:
• More complex, multi-stage applications (e.g.,

iterative graph algorithms and machine learning)
• More interactive ad-hoc queries
• Both multi-stage and interactive apps require faster data

sharing across parallel jobs
• Use of sharing and caching of data with the goal of speed

Spark Basics

• Various types of data processing computations available in one single tool
• Batch/streaming analysis, interactive queries and iterative algorithms
• Previously, these would require several distinct and independent tools

• Supports several storage options and streaming inputs for parsing

• APIs available in Java, Scala, Python, R, …
• Also R language supported, for data scientists with moderate programming experience

Spark at a glance

• Leverages on in-memory data processing:
• Removes the MapReduce overhead of writing intermediate

results on disk
• Fault-tolerance is still achieved through the concept of lineage

• Master/Worker cluster architecture
• Easily deployable in most environments, including existing

Hadoop clusters
• Widely configurable for performance optimization, both in

terms of resource usage and application behavior

Data Sharing in Hadoop

iter. 1 iter. 2 . . .

Input

HDFS
read

HDFS
write

HDFS
read

HDFS
write

Input

query 1

query 2

query 3

result 1

result 2

result 3

. . .

HDFS
read

Slow due to replication, serialization, and disk IO

Data sharing in Spark

iter. 1 iter. 2 . . .

Input

Distributed
memory

Input

query 1

query 2

query 3

. . .

one-time
processing

10-100× faster than network and disk

How does Spark gain efficiency?

• Exploit Memory - Network & Disk I/O are
the bottleneck

• Many datasets fit into memory

The inputs of over 90% of jobs in
Facebook, Yahoo!, and Bing clusters fit
into memory

1TB = 1 billion records @ 1 KB

• Memory density (still) grows with Moore’s
law

RAM/SSD hybrid memories at horizon

High-end datacenter node

16-24 cores

10-30TB

128-512GB

1-4TB

10Gbps

0.2-1GB/s
(x10 disks)

1-4GB/s
(x4 disks)

40-60GB/s

Spark programming model

• Programs can be run both

• From compiled sources, with proper Spark dependencies, with the Spark-submit script

• Interactively from Spark Shell, a console available for Scala and Python languages

• Key idea:

• Resilient Distributed Datasets (RDDs) kept in memory

• Distributed, immutable collections of objects

• Can be cached in memory across cluster nodes

RDD Transformation
• In addiction to being lazily evaluated, all transformations

are computed again on every action requested

val lines = sc.textFile("data.txt")
val lineLengths = lines.map(s => s.length)
val totalLength = lineLengths.reduce((a, b) => a + b)

Transformation

Action

Until the third line, no operation is performed

The reduce() will then force a read from the text file and the map()
transformation

Persisting RDDs

• In addiction to being lazily evaluated, all transformations
are computed again on every action requested

val lines = sc.textFile("data.txt")
val lineLengths = lines.map(s => s.length)
println(lineLengths.count())
val totalLength = lineLengths.reduce((a, b) => a + b)

Transformation

Action
Action

This effect is expensive, but can be avoided by using the persist() method

The RDD data read and mapped will then be saved for future actions

val lines = sc.textFile("data.txt")
val lineLengths = lines.map(s => s.length)
lineLengths.persist()

Example log Mining

Load error messages from a log into memory, then interactively search for various patterns
 Spark is conveniently used in Industry 4.0 scenarios!

lines = spark.textFile(“hdfs://...”)

errors = lines.filter(_.startsWith(“ERROR”))

messages = errors.map(_.split(‘\t’)(2))

cachedMsgs = messages.cache()

Block 1

Block 2

Block 3

Worker

Worker

Worker

Driver

cachedMsgs.filter(_.contains(“foo”)).count

cachedMsgs.filter(_.contains(“bar”)).count

. . .

task
s

result
s

Cache 1

Cache 2

Cache 3

Base RDD

Transformed RDD

Action

Result: full-text search of Wikipedia in <1 sec (vs 20
sec for on-disk data)

Result: scaled to 1 TB data in 5-7 sec
(vs 170 sec for on-disk data)

Action

Fault Tolerance

messages = textFile(...).filter(_.contains(“error”))
.map(_.split(‘\t’)(2))

HadoopRDD
path = hdfs://…

FilteredRDD
func = _.contains(...)

MappedRDD
func = _.split(…)

RDDs track the series of transformations used to build them (their lineage) to re-compute
lost data

Example: logistic regression

Initial parameter vector

Repeated MapReduce steps
to do gradient descent

Load data in memory once

val data = spark.textFile(...).map(readPoint).cache()

var w = Vector.random(D)

for (i <- 1 to ITERATIONS) {
val gradient = data.map(p =>

(1 / (1 + exp(-p.y*(w dot p.x))) - 1) * p.y * p.x
).reduce(_ + _)
w -= gradient

}

println("Final w: " + w)

Logistic regression performances

0

1000

2000

3000

4000

5000

1 5 10 20 30

R
u

n
n

in
g

 T
im

e
 (

s
)

Number of Iterations

Hadoop

Spark

127 s / iteration

first iteration 174 s
further iterations 6 s

Supported operators

• map

• filter

• groupBy

• sort

• join

• leftOuterJoin

• rightOuterJoin

• reduce

• count

• reduceByKey

• groupByKey

• first

• union

• cross

• sample

• cogroup

• take

• partitionBy

• pipe

• save

• ...

Supported operators

• map

• filter

• groupBy

• sort

• join

• leftOuterJoin

• rightOuterJoin

• reduce

• count

• reduceByKey

• groupByKey

• first

• union

• cross

• sample

• cogroup

• take

• partitionBy

• pipe

• save

• ...

Spark Architecture

• Once submitted, Spark programs create directed acyclic
graphs (DAGs) of all transformations and actions, internally
optimized for the execution

• The graph is then split into stages, in turn composed by tasks,
the smallest unit of work

• Thus, Spark is a master/slave system composed by:
• Driver, central coordinator node running the main() method of

the program and dispatching tasks
• Cluster Master, node that launches and manages actual

executors
• Executors, responsible for running tasks

Spark Architecture
• Each executor spawns at least one dedicated JVM, to which

a certain share of resources is assigned, in terms of:
• Number of CPU threads
• Amount of RAM memory
• The number of JVMs and their

resources can be customized

Partitioning in Spark
Executor 1 Executor 2 Executor N

partitions
CPU core

partition

…...

Every executor core is assigned a data partition to work on,
minimizing network bandwidth

Cores to Tasks to data partitioning relationships on
Spark Executors

• Each task that is allocated to a
Spark core works on a single
partition

• More partitions achieves more
parallelism

Spark worker node

Cores

Executor Core

Task

Partition

Spark RDD Transformation

Bologna is a beautiful city

Bologna is a beautiful city

Bologna is a beautiful city

Bologna beautiful city

Spark.sparkContext.textFile(“file.txt”)

.map(lambda x: x.lower())

.flatMap(lambda x: x.split(“ “)

.filter(lambda x: len(x) > 2) is

RDD[String]

RDD[String]

RDD[String]

RDD[String]

Spark Eco-System (source Databricks)

• three main components:

 Environments:
can run anywhere and
integrate well with other
environments

 Applications:
it integrates well with big
data platforms and
applications

 Data Sources:
can read/write data from/to
many data sources

Example operations

How it works in partitions

• Reduction Concept

Shuffle

Shuffle

Shuffle

The Big Data tools Ecosystem

Batch Storage

MongoDB

MongoDB is Document-oriented NoSQL tool

Open source NoSQL DB

• In memory access to data

• Native replications toward reliability and high availability (CAP)

• Collection partitioning by using sharding key so to keep the information fast
available and also replicated

• Designed in C++

MongoDB
Collection partitioning by using a shard key: Hashed-based to obtain a (not
always) balanced distribution

Distributed architecture:

• Router to accept and route incoming requests coordinating with Config Server

• Shard to store data

Sharded cluster:

• Shard: partition containing subset of data

• Mongos: query router, interface between presentation

Layer and sharded cluster

• Config servers: config settings & metadata

MongoDB in a deployment
The configuration can grant different properties

In a distributed architecture you may employ replication

Distributed architecture:

• Several Routers to accept incoming requests

• Config Server to give access to requests

• Shards to store data

The system is capable

of supporting dynamic

access to documents

MongoDB

The configuration can grant different properties. In a distributed architecture you
may define better

Sharding for high throughput operations

• MongoDB exploits shard key to divide a
collection documents across multiple shards

• Shard key choice has a great impact on the
performance, efficiency, and scalability of the
cluster

• A well-built cluster maybe bottlenecked by
wrong shard key choice of

• Data is sharded into chunks
• Balancer migrates chunks across shards to

achieve load balancing
• Read/write workloads are distributed across

shards for higher throughput
• Queries that include the shard key allows

targeted scans, where mongos route the query
request to specific shards

• More efficient than broadcasting
(scatter/gather)

• Client apps interact with shards through
Mongos

Shard 1

Shard 2

Collection 1
Collection 2

Mongos
(Router)

Hashed Sharding
• Computing a hash of the shard key field's value

• Each chunk is then assigned a range based on the hashed shard
key values

• Data distribution based on hashed values facilitates more even data
distribution

• hashed distribution means that range-based queries on the shard
key are less likely to target a single shard, resulting in more cluster
wide broadcast operations

16 18 20 22

Hashing function

Chunk4Chunk2 Chunk3Chunk1

Ranged Sharding
• Range-based sharding is the default sharding methodology
• Dividing data into ranges based on the shard key values
• Each chunk is then assigned a range based on the shard key values
• A range of shard keys whose values are "close" are more likely to reside on the

same chunk
• The efficiency of ranged sharding relies on the shard key selected

• Poorly selected shard keys cause uneven distribution of data,
counteracting the benefits of sharding or causing performance
degradation

MongoDB Data Model

Based on collections of documents

Stores data in form of BSON or Binary JSON

(Binary JavaScript Object Notation) documents
{

name: "travis",
salary: 30000,
designation: "Computer Scientist",
teams: ["front-end", "database"]

}

Group of related documents with a shared common index is a collection

• When designing a data model, consider how applications will use your database
• if your application needs are mainly read operations to a collection,

adding indexes to support common queries can improve performance.

Embedded Data
• Embedded documents capture relationships between data by storing related

data in a single document structure
• embed document structures in a field or array within a document
• denormalized data models allow applications to retrieve and manipulate

related data in a single database operation
• better performance for read operations, as well as the ability to request

and retrieve related data in a single database operation.

References (normalized data models)
References store the relationships between data by including links or references from
one document to another

Applications can resolve these references to access the related data

To join collections, MongoDB provides the aggregation stages ($lookup)

MongoDB: Typical Query

Query all employee names with salary greater than 18000 sorted in ascending
order

db.employee.find({salary:{$gt:18000}, {name:1}}).sort({salary:1})

Collection Condition Projection Modifier

{salary:25000, …}

{salary:10000, …}

{salary:20000, …}

{salary:2000, …}

{salary:30000, …}

{salary:21000, …}

{salary:5000, …}

{salary:50000, …}

{salary:25000, …}

{salary:20000, …}

{salary:30000, …}

{salary:21000, …}

{salary:50000, …}

{salary:20000, …}

{salary:21000, …}

{salary:25000, …}

{salary:30000, …}

{salary:50000, …}

Insert, Update, Remove
Insert: insert a row entry for new employee Sally

db.employee.insert({ name: "sally", salary: 15000, designation: "MTS", teams: [
"cluster-management"] });

Update: All employees with salary greater than 18000 get a designation of Manager
db.employee.update({salary:{$gt:18000}}, {$set: {designation: "Manager"}}, {multi:

true})
Multi-option allows multiple document update

Remove: remove all employees who earn less than 10000
db.employee.remove({salary:{$lt:10000}})

Can accept a flag to limit the number of documents removed

Typical MongoDB Deployment
• Data split into chunks,

based on shard key (~
primary key)

• Either use hash or
range-partitioning

• Shard: collection of
chunks

• Shard assigned to a
replica set

• Replica set consists of
multiple mongod servers
(typically 3 mongod’s)

• Replica set members are
mirrors of each other

• One is primary
• Others are

secondaries
• Routers: mongos server

receives client queries and
routes them to right replica
set

• Config server: Stores
collection level metadata.

Mongod
Mongod

Config

Router
(mongos)

Router
(mongos)

Mongod
Mongod

mongod
Mongod

Mongod
mongod

1

54

3

2

6

Replica Set

Replication

Uses an oplog (operation log) for data sync up:
• Oplog maintained at primary, delta transferred to secondary continuously/every once in a

while

When needed, leader Election protocol elects a master

Some mongod servers do not maintain data but can vote – called as Arbiters

Secondary

Primary

Secondary
Heartbeat

Write Read

Read preferences

Determine where to route read operation.

Default is primary

Some other options are
• Primary-preferred
• Secondary
• Nearest

Helps reduce latency, improve throughput
Reads from secondary may fetch stale data

Write concern

Determines the guarantee that MongoDB provides on the success of a write
operation

Default is acknowledged (primary returns answer immediately)

Other options are:

• journaled (typically at primary)

• replica-acknowledged (quorum with a value of W), etc.

Weaker write concern implies faster write time

Write concern

Determines the guarantee that MongoDB provides on the success of a write
operation

Default is acknowledged (primary returns answer immediately)

Other options are:

• journaled (typically at primary)

• replica-acknowledged (quorum with a value of W), etc.

Weaker write concern implies faster write time

Journaling: Write-ahead logging to an on-disk journal for durability

(Journal may be memory-mapped)

Indexing: Every write needs to update every index associated with the collection

Balancing & Consistency

Balancing

Over time, some chunks may get larger than others

• Splitting: Upper bound on chunk size; when hit, chunk is split

• Balancing: Migrates chunks among shards if there is an uneven distribution

Consistency

• Strongly Consistent: Read Preference is Master. With Strong consistency, under
partition, MongoDB becomes write-unavailable thereby ensuring consistency

• Eventually Consistent: Read Preference is Slave (Secondary or Tertiary)

Indexing in MongoDB

• Without indexes, collection
scan (broadcast scan)

• Types
• Single Field
• Compound Index
• Multikey Index
• Geospatial Index
• Hashed Indexes

Hashed Indexes

• Indexes the hash of the value of a field
• Support hash based sharding

• Only support equality matches and cannot support range-based queries

• Hashing function is used to calculate the hash of the value of the index
field

16 18 20 22

Hashing function

Chunk4Chunk2 Chunk3Chunk1

Things to consider when indexing

• you should have a deep understanding of your
application's queries

• When your index fits in RAM, the system can avoid
reading the index from disk and you get the fastest
processing

• Indexes fill up space (each index requires 8 kB)
• Indexing can negatively impact write operations, for

workloads with high write-to-read ratio
• Indexes are beneficial for workloads with high read-to-

write ratio

Stream processing models

Stream Processing

There is more and more interest on stream processing … so …

Automatize everything – for dedicate-purpose behavior

data stream is a potentially unbounded sequence of events

monitoring data, sensor measurements, credit card transactions, weather station
observations, online user interactions, web searches, etc.

More and more set of tools become available to express and design a complex streaming architecture
to be immediately deployed

• Apache Storm
• Yahoo S4
• Spark Streaming (?)
• Apache Flink
…

A stateful streaming application
• Applications normally process

streams of events
• Not just trivial record-at-a-time

transformations
• Need to be stateful

• Storing and accessing
intermediate results

• Reading/writing data to the
state

• Variables, local files,
embedded or external DBs

• Apache Flink
• Writing state locally in-memory

or to embedded DB
• Periodically consistent

checkpointing to remote and
durable storage

Local State store

Processing Logic

Store
state

Retrieve
state

Consistent periodic
checkpointing

Durable remote
store

Event log
stream

Incremental
output

Stateful stream processing

• Stateful stream processing applications ingest events from an event log
• Event logs store and distribute event streams
• Events are typically stored to a durable, append-only log, meaning that

the order at which events are of written is unchangeable
• Apache Kafka is the de facto event log system

• In failure cases, stream processors (e.g., Apache Flink) restores the latest known
state from the last checkpoint and resets the read position in the event log

• Replaying events from the event log until the stream tail is reached

• Three kinds of applications typically implemented by exploiting stateful stream
processing:

(1) event-driven applications,
(2) data pipeline applications, and
(3) data analytics applications

Dataflow programming paradigm
• Dataflow graphs specify the way data flows between operations

• Directed graphs,
• where nodes are known as operators, which represent computations
• edges represent data dependencies

• Logical graphs as because they present a high-level view of the involved
computation logic

• Operators are the primitive functional units
• Ingest data from sources, perform a computational logic, and produce output data

for subsequent stages

• Operators with no input are known as data sources, while operators
with no output are known as data sinks

Text
data

source

Extract
words Count Frequent

words

Big data
processing is
a trending
big topic in
2022

Big
Data
processing
trending
big
topic

Big, 2
Data, 1
Processing, 1
trending, 1
Topic, 1

data sources Operator Operator data sink

Dataflow programming paradigm (cont.)

• Logical graph will be converted to physical dataflow graph, which specifies in
detail how the program is executed.

• In a distributed processing deployment
• One operator with multiple parallelly running tasks, working on partitions of data stream.

Text
data

source

Extract
words Count

Frequent
words

big data
processing is

big
data
processing

big, 2
Data, 1
Processing, 1data sources

Operator
instances

Operator
instances

data sink

Extract
words

Count

a trending
big topic in
2022 trending

topic

trending, 1
Topic, 1

big

Data Exchange Strategies (online data partitioning)

• Specifies the way by which data tuples are distributed to parallelly connected physical
dataflow graph tasks

• Strategies
 Forward strategy. Forward data from one task to a subsequent task
 Broadcast strategy. Sending the same copy of data to all parallelly connected

instances (tasks) of an operator  expensive
 Key-based strategy. Sends same-key tuples to the same operator instances (tasks)
 Random strategy. Randomly assigning roughly equal data loads to parallel

operator tasks (instances)

Random

Forward
Broadcast

Key-
based

Common window types

• Tumbling windows
• assign streaming events to non-overlapping fixed-size buckets (micro

batches)
• Evaluation function is triggered whenever a window border is crossed

• Count-based  how many events before triggering the function
• Time-based  time interval

Count-based

Time-based, 5
minutes

16:00 16:05 16:10 16:15

Transformations

• A stream transformation converts an input stream to an output stream

• Common transformations
• Basic transformations  transformations on individual events
• Multi-stream transformations  merge/split multiple streams

Basic transformations

• Processing single events (one-record-at-a-time)
• Single input tuple produce single output tuple
• Conversions, records filtering and splitting

• Map transformation: a user-defined mapper produces an output from an input
tuple, possibly with different type

• Filter transformation : a Boolean condition decides wether to drop tuples

Map

Filter

Basic transformations

• FlatMap
• similar to map, but may result in zero, one, or more output

tuples for each incoming input tuple

Multi-stream transformations

• Merging multiple streams or split a stream to sub-streams

• UNION
• merges two or more streams of the same type and output a

new stream having same type
• Subsequent transformations process the elements of all combined input

streams

Multi-stream transformations (cont.)

• SPLIT
• Splits an input stream to two or more sub-streams having same type as the

input stream
• Incoming tuples are assigned to zero, one, or more output streams

Stream Processing Challenge

Large amounts of data  Need for real-time views of data

• Social network trends, e.g., Twitter real-time search

• Website statistics, e.g., Google Analytics

• Intrusion detection systems, e.g., in most datacenters

Process large amounts of data

• with latencies of few seconds

• with high throughput

Not MapReduce

The out-of-line workflow is not suitable at all

The typical Batch Processing  need to wait for entire computation on large
dataset before completing

In general batch approaches are not intended for long-running stream-
processing

Stream Processing Model

Stream processing manages:

• Allocation

• Synchronization

• Communication

Applications that benefit most of the streaming model with requirements:

• High computation resource intensive

• Data parallelization

• Data time locality

kernel

kernel

kernel

kernelkernel

kernel

kernel

INPUTS

Classifier

Stream processing support functions

We need available some basic functions that can help in mapping the concepts
we need to express

Storm is fast in processing over a million tuples per second per node: it is scalable,
fault-tolerant, respecting SLA over data to be processed

Main functions must support the stream processing model:

• Resource allocation

• Data classification

• Information routing in flows

• Management of execution/processing status

STORM

Apache Project http://storm.apache.org/
Highly active Java based JVM project

Multiple languages supported via user API:

• Python, Ruby, etc.

Over 50 companies use it, including:

• Twitter: for personalization, search

• Flipboard: for generating custom feeds

• Spotify, Groupon, Weather Channel, WebMD, etc.

STORM

Apache Project http://storm.apache.org/
Highly active Java based JVM project
Multiple languages supported via user API:
• Python, Ruby, etc.

Over 50 companies use it, including:
• Twitter: for personalization, search;
• Flipboard: for generating custom feeds;
• Spotify, Groupon, Weather Channel, WebMD, etc.

Core Components:

Tuples, Streams, Spouts, Bolts, Topologies

Tuple

We have already seen tuple as a set of values according to some attributes

The tuple is an ordered list of elements

E.g., <tweeter, tweet>
• E.g., <“Miley Cyrus”, “Hey! Here’s my new song!”>
• E.g., <“Justin Bieber”, “Hey! Here’s MY new song!”>

E.g., <URL, clicker-IP, date, time>
• E.g., <coursera.org, 101.102.103.104, 4/4/2014, 10:35:40>
• E.g., <coursera.org, 101.102.103.105, 4/4/2014, 10:35:42>

Tuple

Stream

Sequence of tuples

Tuples potentially unbounded in number

Social network example:

<“Miley Cyrus”, “Hey! Here’s my new song!”>,

<“Justin Bieber”, “Hey! Here’s MY new song!”>,

<“Rolling Stones”, “Hey! Here’s my old song that’s still a super-hit!”>, …

Website example:
<coursera.org, 101.102.103.104, 4/4/2014, 10:35:40>,
<coursera.org, 101.102.103.105, 4/4/2014, 10:35:42>, …

Stream processing 76

Tuple Tuple Tuple

Spout

One spout is a Storm entity (process) that is a source of streams (set of tuples)

Often reads from a crawler or DB

Spouts normally read data from an external data source and emit tuples into the topology

Spouts don’t perform any processing; they simply act as a source of streams, reading from a data source and
emitting tuples to the next type of node in a topology: the bolt

Spout

A bolt is a Storm entity (process) that
• Processes input streams
• Outputs more streams for other bolts

Topology

A directed graph of spouts and bolts (and output bolts)

Corresponds to a Storm “application”

Topology

A Storm topology may define an architecture that can also have cycles if the
application needs them

Bolts come in many Flavors

Operations that can be performed
• Filter: forward only tuples which satisfy a condition
• Joins: When receiving two streams A and B, output all pairs (A,B) which satisfy a condition
• Apply/transform: Modify each tuple according to a function
• …And many others

But bolts need to process a lot of data
• Need to make them fast

Parallelizing Bolts

Storm provides also multiple processes (“tasks”) that can constitute a bolt

Incoming streams split among the tasks

Typically each incoming tuple goes to one task in the bolt
• Decided by “Grouping strategy”

Grouping

Three types of grouping are popular

Shuffle Grouping

• Streams are distributed evenly among the bolt tasks

• Round-robin fashion

Fields Grouping

Group a stream by a subset of its fields such as

• all tweets where twitter username starts with [A-M,a-m,0-4] goes to task 1, and

• all tweets starting with [N-Z,n-z,5-9] go to task 2

All Grouping

• All tasks of bolt receive all input tuples

• Useful for joins

Failure behavior

Also failures can be mapped

A tuple is considered failed when its topology (graph) of resulting tuples fails to
be fully processed within a specified timeout (time dimension)

Anchoring: Anchor an output to one or more input tuples
• Failure of one tuple causes one or more tuples to be replayed

API For Fault-Tolerance (OutputCollector)

Emit (tuple, output)

• Emits an output tuple, perhaps anchored on an input tuple (first argument)

Ack (tuple)

• Acknowledge that a bolt finished processing a tuple

Fail (tuple)

• Immediately fail the spout tuple at the root of tuple topology if there is an
exception from the database, etc.

Must Record the ack/fail of each tuple

• Each tuple consumes memory. Failure to do so results in memory leaks.

Storm Cluster

Several components in a Cluster

Zookeeper

ZooKeeper is an open-source Distributed Coordination Service for Distributed
Applications:

• can propose a unique memory space with very fast access in reading and
writing with some quality (QoS: replication is paramount and dynamicity too)

• relieves distributed applications from implementing coordination services from
scratch

• exposes a simple set of primitives to implement higher level services for
synchronization, configuration maintenance, and groups and naming

The data model is shaped after the familiar directory tree structure of file systems
and it runs in Java with bindings for both Java and C

Zookeeper

ZooKeeper is seen as a unique access space with very fast operations to read
and write data with different semantics (FIFO, Atomic, Causal, …)

Data are dynamically mapped over several nodes and their location can be
dynamically changed and adjusted without any actions of clients.

Storm Architecture

Storm allows to:

1. First express your need in streaming via its components you can easily define
and design

2. Secondly, configure your capacity needs over a real architecture so to
produce a controlled execution

3. Then operate it over different architectures

Storm Cluster
Master node

• Runs a daemon called Nimbus
• Responsible for
 Distributing code around cluster
 Assigning tasks to machines
 Monitoring for failures of machines

Worker node
• Runs on a machine (server)
• Runs a daemon called Supervisor
• Listens for work assigned to its machines
• Runs “Executors”(which contain groups of tasks)

Zookeeper
• Coordinates Nimbus and Supervisors communication
• All state of Supervisor and Nimbus is kept here

Spark Streaming

micro-batch-processing tools

Framework for large scale stream processing
• Scales to 100s of nodes
• Can achieve second scale latencies
• Integrates with Spark’s batch and interactive processing
• Provides a simple batch-like API for implementing complex algorithm
• Can absorb live data streams from Kafka, Flume, ZeroMQ, etc.

Existing streaming systems: Storm
•Replays record if not processed by a node
•Processes each record at least once
•May update mutable state twice!
•Mutable state can be lost due to failure!

SPARK Streaming Requirements

 Scalable to large clusters

 Second-scale latencies

 Simple programming model

 Integrated with batch & interactive processing

 Efficient fault-tolerance in stateful computations

Spark Streaming

Spark Streaming: extension that allows to analyze streaming data
Ingested and analyzed in micro-batches

Uses a high-level abstraction called Dstream (discretized stream) which
represents a continuous stream of data

• Divide live stream into batches
of X seconds

• Spark treats each batch of
data as RDDs

• Return results in batches, output
can be persisted on the
storage layer*

Spark

Spark
Streaming

batches of X
seconds

live data
stream

processed
results

val tweets = ssc.twitterStream(<Twitter username>, <Twitter password>)

val hashTags = tweets.flatMap (status => getTags(status))

flatMap flatMap flatMap

…

transformation: modify data in one Dstream to create another DStreamnew DStream

new RDDs created for
every batch

batch @ t+1batch @ t+1batch @ tbatch @ t batch @ t+2batch @ t+2

tweets DStream

hashTags Dstream
[#cat, #dog, …]

Example 1 – Get hashtags from Twitter

val tweets = ssc.twitterStream(<Twitter username>, <Twitter password>)

val hashTags = tweets.flatMap (status => getTags(status))

hashTags.saveAsHadoopFiles("hdfs://...")

output operation: to push data to external storage

flatMa
p

flatMa
p

flatMa
p

save save save

batch @ t+1batch @ t batch @ t+2
tweets DStream

hashTags DStream

every batch saved
to HDFS

Example 1 – Get hashtags from Twitter

Key concepts

DStream – sequence of RDDs representing a stream of data
• Twitter, HDFS, Kafka, Flume, ZeroMQ, Akka Actor, TCP sockets

Transformations – modify data from on DStream to another
• Standard RDD operations – map, countByValue, reduce, join, …
• Stateful operations – window, countByValueAndWindow, …

Output Operations – send data to external entity
• saveAsHadoopFiles – saves to HDFS
• foreach – do anything with each batch of results

val tweets = ssc.twitterStream(<Twitter username>, <Twitter password>)

val hashTags = tweets.flatMap (status => getTags(status))

val tagCounts = hashTags.countByValue()

flatMa
p

map

reduceByKey

flatMa
p

map

reduceByKey

…

flatMa
p

map

reduceByKey

batch @ t+1batch @ t batch @ t+2

hashTags

tweets

tagCounts
[(#cat, 10), (#dog, 25), ...]

Example 2 – Count the hashtags

val tweets = ssc.twitterStream(<Twitter username>, <Twitter password>)

val hashTags = tweets.flatMap (status => getTags(status))

val tagCounts = hashTags.window(Minutes(10), Seconds(1)).countByValue()

sliding window
operation window length sliding interval

Example 3 – Count the hashtags over last 10 mins

tagCounts

val tagCounts = hashTags.window(Minutes(10), Seconds(1)).countByValue()

hashTags

t-1 t t+1 t+2 t+3

sliding window

countByValue

count over all
the data in the

window

Example 3 – Count the hashtags over last 10 mins

Comparison with Storm and S4

Higher throughput than Storm

 Spark Streaming: 670k
records/second/node

 Storm: 115k
records/second/node

 Apache S4: 7.5k
records/second/node

0

10

20

30

100 1000Th
ro

ug
hp

ut
 p

er
 n

od
e

(M
B/

s)

Record Size (bytes)

WordCount

Spark

Storm

0

40

80

120

100 1000Th
ro

ug
hp

ut
 p

er
 n

od
e

(M
B/

s)

Record Size (bytes)

Grep

Spark

Storm

