

# Designing Distributed Geospatial Data-Intensive Applications

Ph.D. Course, 2022

# Instructors:

# Prof. Luca Foschini, Associate Professor &

Dr. Isam Mashhour Al Jawarneh, Postdoctoral Research Fellow

{isam.aljawarneh3, Luca.foschini}@unibo.it

Department of Computer Science and Engineering (DISI), Università di Bologna

# Part 2

# Designing highly efficient geospatial data-intensive solutions 22<sup>nd</sup> July 2022

# Introduction to spatial data

#### What is spatial data

- A **spatial object** is an element for **modelling** world data into information systems (specifically **GIS**)
  - A digital representation of geographical entity or phenomenon
  - Defined by **spatial data**
  - points, lines and areas
  - Points are the primary element in GIS
    - All other objects are represented by series of points

#### Tasks in Geographic Information Systems (GIS)



#### **Distributed Spatial data management**

- We need extensions to the existing parallel DBMSs (data models & query languages) to be able to manage geometrical objects:
  - Specialized data structures & indexing methods
  - Geometrical computation algorithms & query optimizers
- A parallel spatial DBMS provides additional functionalities for dealing with spatial data (geodata), supporting spatial data types in its model & language
  - Point, polygon, line, etc.,
- Efficient spatial **indexing** & **join** are key elements

## **Spatial data collection**

#### 1) Ground surveying

- Land surveying
  - Surveyors determine the positions of locations by triangulating from the position of known locations
- GPS: vehicle, phone, etc.,
- Geocoding
  - Attaching a **geographic** location to some sort of address information, such as a house address or zip code
  - Some form of database of addresses whose locations are precisely known
  - Unlocated addresses are matched to these known addresses in the database

#### • Surveys

- Attributed information, and determining the **location** requires **geocoding** (e.g., **surveyor's GPS**)
- Equip cars with **GPS receivers**, drive around recording pictures of their surroundings

#### • Sensors

- Climate stations
  - Measuring temperature, air pressure, and precipitation
  - GPS specifies the locations of these sensors, or through geocoding

#### **Spatial data collection**

# 2) Remote sensing

- Collecting data at a distance (far from the objects),
- •e.g., plane, satellite or drone pictures



Image source

## Global positioning systems (GPS)

- Constellations of satellites that orbit the Earth
  - Satellites transmit signals to the earth's surface that indicate their **position** in space
  - Device equipped with an appropriate GPS receiver can interpret these signals and determine the device's location on the earth
  - Every mobile has a GPS receivers
    - Easy to record, or tag, the **location** where a picture was taken or **track** daily movements without special expertise.
    - Voluminous spatial data is collected daily



# Coordinates & Projection

- Locations on the earth's surface are measured in terms of coordinates (Cartesian coordinate system),
  - A set of two or more numbers that specifies a location in relation to some reference system
  - Grid formed by putting together two measurement scales, one horizontal (x) and one vertical (y)
  - The point at which both x and y equal zero is called the origin of the coordinate system



#### Geographic coordinate system

- Define **positions** on the Earth's roughly-spherical surface
  - Uses an east-west scale, called longitude that ranges from +180° to -180°.
  - The north-south scale, called latitude, ranges from +90° (or 90° N) at the North pole to -90° (or 90° S) at the South pole
  - In simple terms, longitude specifies positions east and west and latitude specifies positions north and south



<u>Image source</u>

## **Map Projections**

- **Representation** of spatial objects need to be obtained
  - Transforming objects from real geometries into map objects (representative objects)
    - Normally a reduced-scale generalized model
- Projection: turning a three-dimensional globe into a two-dimensional map.
- How do we go from three-dimensional graticule to two-dimensional geographic coordinates
  - the process of how objects on a 3dimensional surface (the earth) come to be represented on a flat piece of paper or computer screen
  - Our emphasis will be on the properties that different projections distort or maintain – area, shape, and distance





#### **Map Projections**

- Steps for representing the three-dimensional world as two-dimensional visualizations
- (1) Lumpy surface of Earth is represented with an approximate & simplified representation called geoid
- (2) The result is a reference system that is known as a geodetic **datum**, used as a reference for longitude and latitude degrees
- (3) Datum defines **geographic coordinate system** of latitudes and longitudes that indicates where locations are on the surface of the planet
- (4) GCS is transformed from 3-D latitude/longitude coordinates to a projected 2-D coordinate system (PCS) composed of X and Y locations corresponding to those of the GCS counterparts



#### GCS & PCS

- A **GCS** defines where the data is located on the earth's surface.
  - Define locations on a model of the surface of the earth. The GCS uses a network of imaginary lines (longitude and latitude) to define locations. This network is called a graticule
- A projected coordinate (PCS) tells the data how to draw on a flat surface, like on a paper map or a computer screen
  - A projected coordinate system (PCS) is a GCS that has been flattened using a map projection.
  - Maps are flat, so your map must have a PCS in order to know how to draw







#### **Commonly Used Map Projections**

- Projections deal with the methods and challenges around turning a three-dimensional (and sort of lumpy) earth into a two-dimensional map
  - The process is accomplished by a direct geometric projection or by a mathematically derived transformation
- Transformation from 3-D to 2-D
  - Earth flattening
    - Cone
    - Plane (azimuthal projection)
    - Cylinder







#### **Spatial data models**

- Raster data model
  - Non-overlapping polygons (pixels) to represent spatial objects
- Points
- Lines & areas
  - A sequence of adjacent connected pixels
  - Line: all pixels where part of the line passes







Area

#### **Spatial data models**

- Vector data model
  - Needs a **Cartesian coordinate system** (e.g., perpendicular x, y) with **Euclidean** metrics
- Point is the core element
- Lines & areas
  - Sequence of points
    - Non-closed OR closed with no inner boundaries → line
    - Closed & boundaries  $\rightarrow$  polygon
- Loss of accuracy, but lower memory consumption & computation time



#### Vector & raster



**Real World** 





Raster



Image source

### Vector spatial data types

- What need to be modeled:
  - Spatial objects: streets, people, vehicles, cities, etc.,
  - Embedding space: the space from where spatial objects reside
    - Administrative divisions of a city (Neighborhoods, districts, boroughs, etc.,)
- Objects include:
  - Points: object location without its extent
    - schools, restaurants
  - Lines: a trajectory of moving spatial object or a line connecting multiple points
    - Streets, moving vehicle trajectory
  - Polygons (i.e., regions, areas): spatial objects with extents
    - Cities, countries





#### **Spatial objects**



- Embedding space represented by divisions separating administrative areas in Bologna, Italy
- Each division contains spatial **objects** (represented as **points**): vehicles, resturants, etc.,

## Vectorization

- Converting raster (binary) images to vector counterparts
  - Find edge pixels
  - Draw a line passing through edge pixels & map their center points to the corresponding cartesian coordinate system (e.g., x, y)



Х



#### Rasterization

#### • Point

 Find the **pixel** with a center that is closest to vector point

#### • Line

- Find pixels intersecting with the original line
- Bresenham algorithm

#### Polygon

- For every pixel, find if it is inside the polygon (point in polygon, PIP)
- Polygon based fill algorithm



## point in polygon

• Point-in-polygon (PIP)

#### Raw casting algorithm

- (1)Pass a ray out from the test point
- (2) Count the number of times that the ray intersects with the boundaries of the polygon
  - Even  $\rightarrow$  outside
  - Odd  $\rightarrow$  inside



#### Rasterization

#### Polygon based fill algorithm

- For each row in the grid
  - find the intersection points between the row and polygon edges
  - Sort the intersection points with reference to x-axis
  - All pixels that are located between an intersection point with an odd position and its successor are part of the polygon





#### JTS data types

- Java Topology Suit (JTS) is an open-source library of spatial predicates and functions for processing geometries
  - creating and manipulating vector geometry

German Regions



Image source

#### **Spatial framework**

- Spatial framework: a division of a space region
  - tessellation of spatial objects





#### Layer

 A spatial framework in addition to the field that assigns values for each location in the framework



## Data models

Storing a line from 2-D space ?
Endpoints coordinates can be stored in 4-D space
Transformation (i.e., mapping, parameterization) from 2-D embedding space to a 4-D space
2-D space: the space from where lines geometrically reside
4-D space: the space containing the endpoints representing the lines
Fine for just retrieving the data.
However, the inherent geometry and relationship to the embedding space are ignored

| X1 | X2 | Y1 | Y2 |
|----|----|----|----|
| 10 | 90 | 70 | 20 |

Spatial object loses its shape

## Why not parameterizing?

- Are the two lines close to each other?
  - Difficult to tell from the 4-D space
  - Spatial proximity in 4-D space are not necessarily preserved!
- We could reconstruct into a 2-D space,
  - However, why was the transformation used!

Spatial object loses its shape!



#### **Geospatial vector file formats**

- Vector files are GIS data files that represent point, line, or polygon data
- Common
  - Esri Shapefile
  - Geographic JavaScript Object Notation (GeoJSON)
  - OpenStreetMap OSM XML
  - And many others (outside the scope of discussion)
- For points vector data
  - CSV, TSV

### Esri Shapefile

- most common geospatial file type, the industry standard.
- three files that are mandatory to make up a shapefile
  - SHP is the feature geometry.
  - SHX is the shape index position.
  - DBF is the attribute data.
- optionally
  - PRJ is the projection system metadata
  - XML is the associated metadata.
  - SBN is the spatial index for optimizing queries.
  - SBX optimizes loading times.

SF neighborhood shape files

Map shaper



SF neighborhood

## Geographic JavaScript Object Notation (GeoJSON)

- Mostly web-based mapping
- Stores coordinates as text in JavaScript Object Notation (JSON) form
  - Vector points, lines and polygons as well as tabular information





### **Example GeoJSON**

{ "type": "Feature", "properties": { "IDquartiere": "Q07", "TIPOLOGIA": "Quartiere", "quartiere": "Prenestino-Labicano", "CODICE\_SUD": 207.0, "PERIMETRO": 10505.3598993, "AREA": 4291955.5175200002, "CODICE\_NOM": "Q\_07", "IDENTIFICA": 23.0 }, "geometry": { "type": "Polygon", "coordinates": [ [ 12.559051, 41.8948005 ], [ 12.5598259, 41.8926515 ], ...... ] ] } }



#### Advanced geospatial file formats

- A lot of weather data uses **temporal GIS** data formats because of how important time is related to weather
  - multi-temporal geospatial data has time & geographic components
  - weather and climate data track temperature and meteorological changes in a geographical context across time
- Network Common Data Form (NetCDF)
- GRIdded Binary or General Regularly-distributed Information in Binary (GRIB)

#### Network Common Data Form (NetCDF)

- NetCDF array-based for storing multidimensional data
  - A **multidimensional** array, having various variables many dimensions for every variable
- An example: temperature, precipitation or wind speed across time (space time-series data)
- Typical in scientific data (oceanic and atmospheric) for storing spatial time series data
  - Storing meteorology & remote sensing data
- Python tool to convert NetCDF to CSV



<u>source</u>



Image source

| Latitude | Longitude | Value            | dataDate | time | shortName |
|----------|-----------|------------------|----------|------|-----------|
| 46.229   | 8.207     | 6.8078549464e-09 | 20141021 | 1200 | pm10      |
| 46.229   | 8.957     | 4.4633872154e-09 | 20141021 | 1200 | pm10      |
| 46.229   | 9.707     | 5.2217103974e-09 | 20141021 | 1200 | pm10      |

# Example output NetCDF to CSV

# GRIB

- Typical in meteorology for representing weather data (historical & forecast)
  - Defined by the World Meteorological Organization (WMO)
- Multidimensional files storing meteorological data in the form of sequential byte array
- <u>Python tool</u> to convert GRIB to CSV

Example extracting **lat**, **lon**, **2t** (2m temperature) at time = 12:00 from a GRIB file.

| Latitude, | Longitude, Value       |
|-----------|------------------------|
| 90.000    | 0.000 2.7346786499e+02 |
| 90.000    | 0.250 2.7346786499e+02 |
| 90.000    | 0.500 2.7346786499e+02 |
| 90.000    | 0.750 2.7346786499e+02 |
|           |                        |

source

Detour: advanced scenario Thinking geospatially ahead!

# Spatial multidomain analysis

- Studying the correlation between vehicle pollutant emissions and the health of dwellers in metropolitan cities
  - Requires joining geo-referenced mobility and meteorological data (spatial join)
- Requires regular analytics of the relationships between mobility patterns and climate change
  - e.g., Interactive heatmap visualization
- Helps municipalities and city officials in making strategic decisions for the benefit of the health of citizens
- We need to join georeferenced meteorological & mobility data



# Heuristic overview

- Our method is equivalent to the heuristic overview shown in figure
- It resorts to **overlaying** corresponding maps of both datasets with a cheap **equijoin** operation
- We will discuss an efficient distributed method to perform this kind of join, at scale, with QoS guarantees in part 3 of this course.



## Advanced spatial join

- A joint analysis on **location** and **time** dimensions in **series** data.
  - We need to apply **spatial join**.
- However, **spatial join** is computationally **expensive**.
  - Spatial data is parametrized (longitudes and latitudes)
  - Objects **loses** their **geometrical** information by this **transformation**.
  - Bringing parametrized tuples back into real geometries is expensive



long, lat, speed, time



- Different formats. mobility data in tabular (e.g., CSV) and georeferenced meteorological data in NetCDF or GRIB
- Selecting the right data from a constellation of heterogeneous sources
  - GPS data is not 100% accurate
  - Loss of accuracy during data collection
  - GPS coordinates can be inaccurate when the handset is moving quickly, such as in a car or airplane
  - Meteorological data may have been collected with differing set of spatial granularity (granular & coarser)



- Interoperability is a key
  - Spatial interoperability. Do data match up in the spatial dimension?
  - Temporal interoperability. Do weather and mobility data match up in the temporal space?
- What is the spatial & temporal scale for weather & mobility data
- Imagine the earth flattened and gridded, what is the size of each grid cell for which meteorological data is aggregated?
- What distributed data management methods can be used to store and process such georeferenced multidomain data, at scale?



### Spatial resolution

- "What is the smallest unit of area measured?"
- We obtain a lower resolution by aggregating the data over a greater area, which makes it more difficult to reason about the data on a smaller scale
- Whether there had been increasing median PM10 caused by vehicles density on a granular level?
  - It would be hard to establish the pattern
  - Mobility resolution are substantially lower than weather data resolution
  - Changes of median vehicle density in other parts of the coarser resolution might obscure or falsely enhance what is happening on granular level



### Temporal resolution

- The frequency at which spatial data has been collected
  - How often the measurements are taken
- We may collect mobility data on a daily basis, whereas meteorological data is taken every few hours for the same geography
- It is not easy to discover the correlation between mobility and meteorological data on an hourly basis, different temporal resolutions



# **Spatial Analysis**

# Tasks in Geographic Information Systems (GIS)

- A geographic information system (GIS) is a fusion of computer hardware and software for
  - Collecting
  - Managing

- Analyzing

Displaying
 geo-referenced
 data (geospatial, spatial)



## Spatial analysis stack



# **Geospatial analysis**

- Four kinds of analysis:
  - Point pattern
  - Autocorrelation
  - Proximity
  - Correlation
- Looking at location alone, or location and attributes at the same time.
- Differ in whether they scan points and areas, or just points or areas
- Looking at just one theme (for example, only population) or several themes at a time (like two maps of districts, one showing population density per district and the other one of average income).

# Example analysis

- how many rides are taken each day (in each district),
  - and we can identify the days of the week and month in which the most rides take place.

| -[ RECORD 1 ]+    |                     |  |  |  |  |  |  |
|-------------------|---------------------|--|--|--|--|--|--|
| vendor_id         | 1                   |  |  |  |  |  |  |
| pickup_datetime   | 2016-01-01 00:00:01 |  |  |  |  |  |  |
| dropoff_datetime  | 2016-01-01 00:11:55 |  |  |  |  |  |  |
| trip_distance     | 1.20                |  |  |  |  |  |  |
| pickup_longitude  | -73.979423522949219 |  |  |  |  |  |  |
| pickup_latitude   | 40.744613647460938  |  |  |  |  |  |  |
| dropoff_longitude | -73.992034912109375 |  |  |  |  |  |  |
| dropoff_latitude  | 40.753944396972656  |  |  |  |  |  |  |
| fare_amount       | 9                   |  |  |  |  |  |  |

How many rides on New Year's morning originated from **within** 400m of Times Square

|   | day        | count    |        |
|---|------------|----------|--------|
| - | +          |          |        |
|   | 2016-01-01 | 00:00:00 | 345037 |
|   | 2016-01-02 | 00:00:00 | 312831 |
|   | 2016-01-03 | 00:00:00 | 302878 |
|   | 2016-01-04 | 00:00:00 | 316171 |



# **Geodata Themes**

#### Cultural

- Administrative (**Boundaries**, cities and planning)
- Socioeconomic data (Demographics, economy and crime)
- Transportation (Roads, railways and airport)
- Physical
  - Environmental data (Agriculture, soils and climate)
  - Hydrography data (Oceans, lakes and rivers)
  - Elevation data (Terrain and relief)
  - Urban and regional planning



Image source

### **Point Pattern Analysis**

- Locational distribution of objects or events within one theme
  - spatial distributions of locations of objects or events
  - relationships between the locations of objects in space relative to the locations of other objects
- Describing the pattern of a single theme of interest—locations of cars —over the embedding area

#### Image source

London Burglary Locations (2015)





# **Point Pattern Analysis**

- Three types
  - Random
  - Uniform
    - Objects are roughly evenly distributed across the embedding space
    - Sensors for measuring the pollution levels in a city
  - Clustered
    - Objects are located in groups forming clusters
      - Cars in city centers during rush hours

#### **Point Patterns**

0

0





Random

Clustered



# **Autocorrelation Analysis**

- Spatial distribution of location and attributes over an area
  - Mobility data is collected at the level of individual cars, it can then be aggregated and mapped over an area, rather than tied to one specific location
  - Autocorrelation  $\rightarrow$  the relationship of one attribute to itself
  - Reports these data as **mobility rates** for specific **neighborhoods**, which allows us to compare mobility among neighboring areas.
  - To make decisions regarding measures to reduce the impact of vehicle **mobility** on **traffic congestion** levels on neighborhood levels, autocorrelation analysis is the best.

# Tobler's First Law of Geography

- "Everything is related to everything else, but near things are more related than distant things."
  - Negative autocorrelation  $\rightarrow$  nearby things are unrelated

  - No autocorrelation → no discernible pattern in the distribution of the attribute



- London burglary rates aggregated by borough
- positive autocorrelation

   → Those with high burglary rates are generally located nearer to other boroughs with high or above-average burglary rates.



Image source

## **Proximity Analysis**

- Describes the spatial relationships and patterns between locations across two themes
  - **point pattern analysis** with two different kinds of objects or events.
  - Relationship between vehicle **mobility** and air **pollutions**
  - help us to make sense of the world across time and locational distance
  - tremendously useful for public health → determining how diseases spread (outbreaks), predicting vulnerability to disease, and how and where interventions are essential

# **Correlation Analysis**

- Analyzing the spatial relationship between multiple attributes or themes
  - Relationship between mobility and pollution rates
  - the degree or extent to which two or more different attributes are spatially related
  - relationship between an aggregated attribute and a specific point
  - overlaps between proximity and correlation analysis

# Spatial multidomain analysis

- Studying the correlation between vehicle pollutant emissions and the health of dwellers in metropolitan cities
  - Requires joining geo-referenced mobility and meteorological data (spatial join)
- Requires regular analytics of the relationships between mobility patterns and climate change
  - e.g., Interactive heatmap visualization
- Helps municipalities and city officials in making strategic decisions for the benefit of the health of citizens
- We need to join georeferenced meteorological & mobility data



#### **Heuristic overview**

- Looking at the two maps side by side, we can figure a general correlation between neighborhoods with relatively high mobility rates and higher levels PM 10 pollutions
- It resorts to overlaying corresponding maps of both datasets with a cheap equijoin operation
- We will discuss an efficient distributed method to perform this kind of join, at scale, with QoS guarantees in part 3 of this course.



## Advanced spatial join

- A joint analysis on **location** and **time** dimensions in **series** data.
  - We need to apply **spatial join**.
- However, **spatial join** is computationally **expensive**.
  - Spatial data is parametrized (longitudes and latitudes)
  - Objects **loses** their **geometrical** information by this **transformation**.
  - Bringing parametrized tuples back into real geometries is expensive



long, lat, speed, time



# **Geospatial analysis**

| Analysis        | concentration                 | Geometries   | Themes |
|-----------------|-------------------------------|--------------|--------|
| Point pattern   | location                      | point        | 1      |
| Proximity       | Location                      | Point/region | 2+     |
| Correlation     | Location and attribute values | Point/region | 2+     |
| Autocorrelation | Location and attribute values | Region       | 1      |

# **Querying Geospatial Data**

- What is the spatial relationship between neighborhoods
  - For example, joining a table to itself and measuring distances between neighborhoods



Image source



# Spatial relationships examples

- ST\_WITHIN(**x**, **y**)
  - no point of x is outside of y
- ST\_INTERSECTS(**x**, **y**)
- ST\_EQUALS (x , y)
  - X and y represent the same
- ST\_TOUCHES(x, y)
  - X intersects y. The interior of x and the interior of y are disjoint