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Spatial join

• Spatial joins are essential in spatial 
data analysis 

• Combining data from various 
tables by exploiting spatial 
relationships (contains, within, 
etc.,) as the join key

• Most kinds of spatial analysis 
can be expressed as spatial 
joins

Spatial join



SQL-like Example

Spatial joins are joins of 
two relations, with a 
geospatial predicate 
function within the 
WHERE clause (SQL)

-- how many stations within 1 mile range of each zip code?

SELECT

zip_code AS zip,

ANY_VALUE(zip_code_geom) AS polygon,

COUNT(*) AS bike_stations

FROM

`bigquery-public-data.new_york.citibike_stations` AS bike_stations,

`bigquery-public-data.geo_us_boundaries.zip_codes` AS zip_codes

WHERE ST_DWithin(
zip_codes.zip_code_geom,

ST_GeogPoint(bike_stations.longitude, bike_stations.latitude),

1609.34)

GROUP BY zip

ORDER BY bike_stations DESC 

Code source

https://cloud.google.com/bigquery/docs/geospatial-data


Types of Spatial Join
Intersect Within a distance

Completely within

Based on the spatial 

relationships

equalsClosest

Images sources

https://gisgeography.com/spatial-join/


Spatial join examples

1. Supermarkets (points) are within a specific neighborhood 
(polygon). Spatial join affix neighborhood attributes to 
supermarket locations.

2. Every district (polygon) is responsible for maintaining its 
roads (lines). Using spatial join, each road record will add 
a column specifying to which district it belongs.

3. Cars (points) circulating in city roads (lines). By using 
spatial join, we can specify the road segment which the 
car navigated at a specific moment.



Parametrized spatial data



Embedding area polygons



Overlaying maps



Spatial join 

● given: spatial objects o1, o2

find: { oi ∈ o1, oj∈ o2 | θ(oi.geometry, oj.geometry)}

with θ : ==, intersects, within

● A kind of Theta-join, which is computationally expensive

○ Links tables based on a spatial relationship instead of equality between two attributes

● Spatial join is a set of all pairs that is formed by pairing two geo-referenced

datasets while applying a spatial predicate (e.g., intersection, inclusion, etc.,)

○ The two participating sets can be representing multidimensional spatial 

objects.  

■ An example spatial join “finding boroughs to which each GPS-represented spatial point 

(volunteer) belongs, a.k.a. geofencing”, 

■ which requires joining spatial points with a master table representing boroughs



Example spatial join

● Find all the gas stations within 10 miles of my office

● In relational algebra terms: 
𝜋𝑛𝑎𝑚𝑒(𝑠𝑡𝑎𝑡𝑖𝑜𝑛𝑠 ⋈ 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛,𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 <10 𝑜𝑓𝑓𝑖𝑐𝑒𝑠)

select distinct s.name from stations 

s, offices o where

distance(s.location,o.location) < 10)



Naïve spatial join

● Naive evaluation of spatial joins (nested loop 

join) too inefficient

● Input: O1, O2 //objects

● Result = {∅}

○ for all oi ∈ o1 do

■ for all oj ∈ o2 do

● If θ ((oi.geometry, oj.geometry)

result = result ∪ [oi,oj]

How many comparisons?!



Filter-refine approach
● 2 steps

○ Filter step

■ Determination of possible hits by 

evaluation on spatial

approximation (lower costs)

○ Refinement step

■ Evaluation on accurate geometry only 

for objects of the

filter step

Input: O1, O2 //spatial objects

result = {∅}

for all oi ∈ o1 do

for all oj j o2 do

If θ (MBR(oi.geometry), MBR(oj.geometry))
If θ ((oi.geometry, oj.geometry)
result = result ∪ [oi,oj]

How many comparisons?!

For efficient spatial queries, 

spatial indexing is essential



Shapefile, NYC

Image sourceassigning trips pickups to city zones 

(districts) is an example of a spatial join

taxi dataset

https://towardsdatascience.com/geospatial-operations-at-scale-with-dask-and-geopandas-4d92d00eb7e8


import geopandas as gpd

from shapely.geometry import Point

df = gpd.read_file('taxi_zones.shp').to_crs({'init': 'epsg:4326'})

df = df.drop(['Shape_Area', 'Shape_Leng', 'OBJECTID'], axis=1)

gpd.sjoin(gpd.GeoDataFrame(crs={'init': 'epsg:4326'},

geometry=[Point(-73.966, 40.78)]), 

df, how='left', op='within')

Code source

https://towardsdatascience.com/geospatial-operations-at-scale-with-dask-and-geopandas-4d92d00eb7e8


Query Test

• Proximity and containment queries 

executed on a circular area centered 
on Bologna

• Center in (44.4949,11.3426)

• Radius range from 500 m to 50 km



What kind of representation for spatial data?

• So, selected spatial data representation should 
facilitate spatial operations
• e.g., facilitates pruning on data retrieval

• The most relevant data structure for representing 
spatial data is the one that is based on spatial 
occupancy
• Decomposing the embedding space into 

buckets (i.e., regions)
• Commonly known as ‘bucketing methods’



Spatial data structures



Spatial Indexing
● Shape-aware organization of spatial data (objects & embedding

space), such that it enables pruning the search space in order to 

answer a spatial query

○ For supporting spatial selection, join and proximity

● Two approaches

○ Specialized spatial index structures: e.g., R-Tree, PR quadtree, KD

tree, Bin-tree, etc., 

○ Dimensionality reduction: transform multidimensional

representation of spatial objects (and space) into a single

dimension

■ Then apply a linear indexing (such as B+-tree)



Supporting data structures

Linear & single-dimension data structures:

Indexing



Data access

• Queries normally access a small portion of data
• Accessing the minimum number of tuples is much faster (what is 

the relevant path?)

• Design choices affecting the path:
• Data arrangement

• Sequential files, linked list 

• Index types
• Linear index or tree-based or a mix of both!

• Caching computations



Basic operations (in relational algebra and NoSQL)

– set operations (e.g., union)
– selection and projection
– join



Selective queries 

• Selection query:

SELECT *
FROM R
WHERE <condition>

• This is fine in case you are retrieving a large portion (e.g., >80) of the 
tuples.

• Otherwise, if your query is highly selective (predicate selectivity is 
low), returning only a small portion of the tuples, then indexing 
provides performance optimization



Selectivity

•An indicator of how much 
data is retrieved by applying a 
selection predicate
• A fractional number between 0 

and 1
• Selectivity 1 means all data rows will 

be retrieved

• Selectivity 0 means that no data 
rows will be retrieved

• Useful for estimating the cost 
associated with a given access 
method

• Example

• Table Employee with 10000 rows

• Select * from Employee

• Query selectivity = 1

• Select * from Employee 
where EmpID = 123

• Selectivity = 1/10000 = 
0.0001

• Point queries are typically  
very highly:  We need 
indexing



Unindexed data

For point queries: we 
need full table scan 
for unindexed data



Indexing

• Think of huge data sets

• Do not fit in fast memory

• Efficient ways for insert, delete and search

• e.g., range query search

• keys point to data → indexing

• Separate files (index files) containing key/value pairs

• Keys are associated with pointers to the real data tuples (record
files)

• Impose an order or organization on index files using a tree
structure

• The most common tree indexing is B-tree for big disk-based data



Indexes

• To avoid full table scans, we need indexes

• An index on an attribute helps finding records 
with specific values on that attribute without the 
need to do an exhaustive full scan



Indexing

Heuristic overview



Indexed scan

Typically, the following 
applies:

• Indexing adds a sorted 
data structure for 
optimizing query 
efficiency

• Query searches for 
specific rows in the index 
structure, then the 
pointer finds the required 
information

• Indexing reduces the 
number of rows to 
search: in this case from 
13 to 4!



Two-level indexing

• With too many records, the index 
size grow exponentially, that is too 
big to fit in the fast memory

• Obviously, we need a second 
level indexing probably on 
non-unique fields

• Linear index is disk-resident

• Second-level index is 
memory-resident



Why not linear indexing

• Linear indexing is only efficient when database is static

• Insertion and deletion is rare

• Applications on databases share the following characteristics:

1. Big number of records updated frequently

2. Search queries require one or several keys

3. Key range queries or min/max queries are used

• Better data structures must be used: Trees!



B+ tree

• B+ tree stores records only at the leaf nodes

• Internal nodes store key values, they are utilized only as 
placeholders to guide the search.

• This means that internal nodes differ significantly from 
leaf nodes (in structure )

• Internal nodes store keys to guide the search, 
associating each key with a pointer to a child B+ tree 
node

• Actual records  reside solely in leaf nodes, 

• But sometimes leaf nodes store keys and pointers to 
real records in an independent disk file, in case 
the B+ tree is being solely utilized as an index

• The leaf nodes of a B+ tree are typically linked together 
in a doubly linked list structure (in-order)

• Advantages
• efficient traversal & search performance, memory 
efficiency

Internal search nodes

Leaf data nodes



Example B+ tree

B+ trees are exceptionally 
good for range queries
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B+ Trees

• But how do those fit into our discussion about geospatial 
data!

• In multidimensional space, there is no unique ordering! Not 

possible to use B+ trees 

• Search trees such as B-trees, are designed for searching 
on a one-dimensional key
• Some databases require support for multiple keys



Why multidimensional indexing

• Having a set of geometrical objects (points, 
lines, polygons)

• The problem is to find a proper organization on 
disk, such that we enable pruning the search 
space while answering a spatial query (point, 
range, kNN)



K nearest neighbors

● Given millions of mobility points, such as 

taxi pickups, how do we find the closest 

pickup trips to a query point 

● An brute-force solution

(1) Calculate the distances between every 

point and the query point

(2) Sort points by their distance in reference 

to the query point (in ascending order)

(3) Return the first K points that are the 

nearest

This is an inefficient solution for millions of 

points

2

1

3

4



Range and radius queries (Window query)

● Find all points confined within 

a rectangle (range query) or 

a circle (radius or proximity 

query)

• The brute-force approach is 

to check all points. 

• Inefficient if the datasets are 

very big and receives hundreds 

of queries every second



What do we need

● For efficient NN and range queries, at scale, spatial index worth the 

effort

○ But what is the read/write ratio for your spatial data.

○ Remember that indexes are expensive!

● An enduring principle shared by all spatial structures for efficient 

spatial searches is what is known as ‘branch and bound’

○ Organizing spatial data in tree-like structures which allows pruning

the search space upon receiving a spatial query

○ By discarding the tree branches that do not meet the spatial
predicate (search criteria) → skipping data



Multidimensional search

• Database of city records

• Vehicle ID & long/latitude

• B-tree is efficient for searches on Vehicle
ID or one of the coordinates, Long OR lat.

• However, not common for two-
dimensional space

• Another possible solution

• Combining the coordinates, 
producing a single key: dimension 
reduction

• Not good for geospatial range 
searches



Types of spatial data structures

• Two types of spatial data structures

• Data-driven

• Based upon a partitioning of the data items themselves

• R-trees and KD-trees

• Space-driven

• Organized by a partitioning of the embedding space, 
akin to order-preserving hash functions

• quad trees and grid files



Space-driven spatial data structures

• Dividing the embedding 2-D space into grid cells (equal-
sized OR based on data distribution)
• Mapping spatial object’s MBRs to cells based on spatial 

relationship (intersects, overlaps)

• Can be used in spatial extensions with B+-tree, 
• which is dynamic and efficient in memory space and query time

• Some examples
• Fixed grid index

• Quadtree



Fixed grid index

• Multidimensional array
of equal-sized cells

• Each one is 
attached to a list of 
spatial objects
• intersecting or 

overlapping with 
the cell

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16
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space filing curves: z-order

• These grid hierarchy cells are numbered in a linear 

fashion called space-filling curves.

• useful because it partially preserves proximity 
(spatial co-locality)→ two cells geographically 

nearby in 2D plane (flattened Earth) are highly likely 

to be close in the sequential order

• Various spatial filling curves → we focus on z-

order curve

• Z-order labels each cell similar to a complete quadtree 
and numbers each quadrant in binary bit string format 

00, 01, 10, 11

• An associated bit string for each at each level, 

corresponding to the level cell belongs to (01 in level 1, 
and 0101 in level 2) → bit interleaving

• 1110 is obtained by selecting 11 at the top-level and 

10 within the top-level quadrant 

• Lexicographical order of the bit strings specifies the order 

that is imposed on all cells of a subdivision

00 01

10
11

0100 0101

0110 0111

1100 1101

1110 1111

0001

00110010

1001

10111010

1000

0000



• mapping multidimensional data to single-dimension with locality 
preserved!



space filing curves: z-order (cont.)

• Space Filling Curves are used to co-locate related data 
in the same set of files

• map multidimensional data to single dimension 
while preserving spatial co-locality

• NoSQL databases support only single dimensions

• Typically, a sorted key-value index

• Spatial data is multidimensional

• Use Space Filling Curves

• Divide the embedding space into grid cells

• order grid cells with a space filling
curve (Z-Order curves)

• Label grid cells in relative to the order that the 
curve
passes through them

• Associate a byte representation of the label to 
the data contained in each grid cell

Image source

https://www.geomesa.org/assets/outreach/foss4g-2021-into-to-big-data.pdf


Calculation of Z-order values

• Bit-interleaving

• Quadrant z-value →
alternating bits from the 
binary representations
of x and y coordinates

X Y

01 10

0 1 1 0



Single-dimension indexing of spatial data
• One-dimensional orderings 

• Mapping multidimension to one dimension 

• preserve spatial proximity 

• Insert Z-elements into a B-Tree (single dimension indexing 

structure) (cf. UB-Tree) as spatial keys in lexicographical

order (z-order)

• Range & containment queries (with rectangle r) are then 

simplified

• Because of the proximity-preserving of z-ordering (spatial 

co-locality)

• Find z-elements of r (covering z-elements)

• For each z-element (z) in the covering scan the part of 

the B-tree leaf sequence containing z as a prefix (filter

step)

• Apply the actual geometrical operation (costly) to 

check for containment (refine step)

• False positives

Image source

• Partition the space with a 

uniform grid

• Attaching numbers to cells so 

that neighboring cells have 

similar numbers 

https://www.researchgate.net/publication/353142012_An_Efficient_Point_Data_Indexing_Structure_for_Multidimensional_Range_Queries


Spatial query optimizer for NoSQL

• Overlay the embedding 
space with a fixed-grid 
network Shard 1 Shard 3

shard
1

shard
2

shard
3

shard
4

B-tree

• Generate a geohash 

covering and a list of 

interacting points

• Impose B-tree index on 

the geohash covering & 

the interacting spatial 

points

• MongoDB router 

forwards requests to 

few shards, pruning the 

search space



Quadtree

• Very popular spatial indexing structure
• A form of grid indexing with varying sizes of grid cells that depend 

on the data distribution (i.e., density of the spatial objects) 

• Each node in the tree covers a bounding box for part of the 
embedding space being indexed,
• root node covers the entire embedding space



Quadtree

• Recursive division of the embedding space into quadrants (four subdivisions) until 
each quadrant hosts a prespecified number of points

• Each node 

• A leaf node containing indexed spatial points, or

• An internal node, having exactly four children (Quad), one child for each 
quadrant obtained by recursively halving the area in both directions

00 0100 0101

0110 0111

10
1100 1101

1110 1111

A

B

root

00 01 10 11

00 01 10 11 00 01 10 11
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A A B B



PR quadtree insertion
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• Recursive decomposition so that only one single point in each leaf node

• approximately half of the leaf nodes will contain no data field



PR quadtree point search
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PR quadtree region search
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• Search for points that are at most 15 units far from the search point Q (40,40)
• Even C does not fall within the circle, we have to search the NW quadrant, because part of the circle is 

enclosed within it! 
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Geohash

• For geocoding points as a short string and use them in web URLs

• It is basically a binary string, with every character indicating alternating divisions of 
a longitude/latitude rectangle

• Split the rectangle into two equal sized splits with Geohash codes ("0" and "1”).

• Objects residing on left have Geohash beginning with ‘0’ , while those on right 
half have a Geohash beginning with "1“

• Assign a plain text (base-32 and base-36) encoding

• The length of Geohash ranges from 1 to 12 → longer Geohash has a granular
precision (covering smaller area)

Image source

https://gistbok.ucgis.org/bok-topics/2018-quarter-02/spatial-indexing#Space


Geohash covering



S2 explained

• framework for decomposing the unit sphere
into a hierarchy of cells

• Hierarchical decomposition of sphere into 
cells

• approximate regions using cells

• cell edges appear to be curved

• straight lines on the sphere (similar to 
the routes that airplanes fly)

• Levels (number of times the cell has been 
subdivided (starting with a face cell))

• range from 0 to 30

• top level→ projecting the six faces of a 
cube onto the unit sphere, 

• lower levels→ subdividing each cell into 
four children recursively

• The smallest cells at level 30 are 
called leaf cells; there are 6 * 430 of 
them in total, each about 1cm 
across on the Earth’s surface. Image source

Level Min Area Max Area

0 85,011,012 km2 85,011,012 km2

1 21,252,753 km2 21,252,753 km2

12 3.31 km2 6.38 km2

30 0.48 cm2 0.93 cm2

https://s2geometry.io/devguide/s2cell_hierarchy.html


S2 explained (cont.)

• useful for spatial indexing
and for approximating
regions (polygons) as a 
collection of cells (S2 
coverer) 
• Points (spatial point objects) 

represented as leaf cells
• Regions (polygons) are 

represented as collections of 
cells

• Each cell is identified uniquely 
by a 64-bit S2CellId

approximation of Hawaii as a collection of S2 cells



Google’s S2

Image source
Image generated by this tool

S2 Coverer for part of Bologna

• S2 cells are ordered sequentially along a space-filling curve

• S2 space-filling curve
• six Hilbert curves linked together to form a single 

continuous loop over the entire sphere
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draw a one-dimensional line that fill every part of a two-

dimensional space

https://s2geometry.io/devguide/s2cell_hierarchy.html
http://s2.sidewalklabs.com/regioncoverer/
https://community.khronos.org/t/space-filling-curve-primitive/50184


S2 Cell Hierarchy

• Enumerate cells along a Hilbert 
space-filling curve

• fast to encode and decode (bit 
flipping)

• preserves spatial co-locality

Image source
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https://docs.google.com/presentation/d/1Hl4KapfAENAOf4gv-pSngKwvS_jwNVHRPZTTDzXXn6Q/edit#slide=id.i43


Google’s S2

• Geofence Earth with a planet-size 
cube

• fill each with a Hilbert curve (yellow)

• project the Hilbert curve onto the 
Earth’s surface (red)

• Efficient approach to represent 
locations as single numbers

Our  locations are represented as 

a specific point on a long line

Image source

https://medium.com/sidewalk-talk/s2-cells-and-space-filling-curves-keys-to-building-better-digital-map-tools-for-cities-a312aa5e2f59


Example S2 covering

• Given a region, find a set of S2 covering cells
• Parameters: max number of cells, max cell 

level, min cell level

• Max level :13, max cells: 45

• 132587f,1325884,1325888c,132588f,1325894,1
32589c,13258b,13258c1,13258c7,13258c9,132
58cb,13258eac,1325f35,1325f37,1325f5,1325f
61,1325f67,132f58b,132f58d,132f593,132f594c,
132f5c4,132f5d1,132f5d7,132f5dc,132f5f,132f6
4,132f7b4,132f7cc,132f7d4

Generated by Region Coverer

Max # 

cells

Median ratio 

(covering area 
/ region area)

Worst ratio

4 3.31 15.83

8 1.98 4.03

20 1.42 1.94

100 1.11 1.19

https://s2.sidewalklabs.com/regioncoverer


Example S2 covering (granular levels)

Generated by Region Coverer

• Max level :30, max cells: 100

• finer covering set of S2 cells

• tradeoff

• more precise coverage →
fewer false positives

• more cells → added 
computational complexity

• cell “levels” (meaning size)

• maximum number of cells covering an 
area

https://s2.sidewalklabs.com/regioncoverer


Data-driven spatial data structures

• data-driven→ based upon a partitioning of the 
data items themselves

• Utilizes spatial containment relationship in place 
of the order of the index. 

• Structures that adapt themselves to spatial 
object’s MBRs



KD Tree insertion
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• Recursive decomposition so that only one single point in each leaf node

• approximately half of the leaf nodes will contain no data field
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R-tree

● Minimum bounding rectangle (MBR)

○ Group geographically nearby objects in same leaf nodes

○ Each node represents the smallest rectangle that encloses 

child nodes

○ Insertion: Find the node that requires the least expansion 

to include the new object

● Disk-resident
● Index nodes (internal search nodes) and data (leaf) nodes

○ All leaf nodes on the same level

○ Spatial objects belong to one of the leaf nodes only

■ But MBRs may overlap (a problem) such as R1 and R2

○ If the R-tree is used solely as an index, leaf nodes contain 

pointers to spatial objects 

J

M

L

N
K

O

P

JR1

R2

R1 K L M

R1

J L M

R1

K N

R2

R1 R2

O P

R3
R3

MBR



Another R-Tree example
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Another R-Tree example
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Efficient range query algorithm

• Indexed data (using R-Tree or PR Quadtree) means that 
data is represented by MBRs

• So, given the query window MBR, it is easy to do a filter
stage first, checking which MBRs from the tree index are 
contained within the MBR of the query window

• For each of those branches, we retrieve the spatial
objects

• Apply the refine stage checking whether the candidate
truly satisfies the predicate (within, intersects, overlaps, 
etc.)



R-trees : Search
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point query may follow several paths 

(tree branches)
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R-tree, Range Query
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Range Query
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R-Tree construction
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Range query in R-Tree
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R-Tree example

A visualization of an R-tree for 138k 

populated places on Earth
Image source

a query window which does not intersect the 

bounding rectangle cannot intersect any of its 

contained objects → MBR join

https://blog.mapbox.com/a-dive-into-spatial-search-algorithms-ebd0c5e39d2a


R+ - Trees

• Disjoint decomposition of the embedding space 

• No overlaps between MBRs

• Spatial objects appear in all MBRs they intersect with 

• Efficient point query as only one path need to be scanned from root to 
leaf

R2

R3 R4 R5 R6

R1

a bd g h c i e fh i c i



Geospatial indexing methods comparison

Index storage Efficient query 

type

Comments

R-tree Disk-resident Point, window, 

kNN

KD-tree In-memory Point, window, 

kNN

Inefficient for 

highly skewed

data

Quad-tree In-memory Point, window, 

kNN

Inefficient for 

highly skewed

data

Z-curve + B+-

tree

Disk-resident Point, window Order of Z-curve

has an impact on 

performance



How to choose a spatial data structure

• performance factors

• Preprocessing Cost. Index construction cost

• Storage Cost. Index storage

• Query Cost. The search time or query cost by utilizing the index 
structure

• Space-driven spatial index → structure of the index is created first, then 
data is added step-wise 

• Does not require changes to the index structure for insertion

• Facilitates merging (fusing) heterogeneous data sources indexed 
with common grid

• Data-driven structures → efficient for storage and faster in search scans, 
but tied to specific data



Storage and processing of big 
geospatial data



Example Cloud software frameworks 
(Geomesa, GeoSpark, GeoFlink, geospatial 
in MongoDB, GeoSparkViz, HadoopViz, etc.)



Problem

• Big geospatial data

• GDELT: Global Database of Event, Language, and Tone

• ~225-250 million records

• Mobility data is gathered by cell phone providers

• Millions of records

• How do we handle big vector geospatial data?

• millions to billions of rows of vector geospatial data 
(mostly points) arriving every day?



GeoMesa

• Constellation of tools for querying and analytics of big geospatial data on 
distributed computing systems.
• Streaming, persisting, managing, and analyzing spatial data at scale, with QoS guarantees

• Efficient spatial indexing atop HBase, Bigtable and Cassandra storage 
systems for scalable storage of vector geospatial data (point, line, 
polygon)

• Near real time geospatial data stream processing atop Apache Kafka

• Supports Apache Spark for geospatial big data stream & batch 
processing

• Integrate well with mapping clients (Web Feature/Mapping Service, WFS 
and WMS)

• In summary, all the Lambda architecture layers are supported, in addition to 
mapping (geo-visualization)



GeoMesa Architectural Overview
• Scalable, cloud-based data 

storage

• Apache Accumulo, 
Apache HBase, and Google 
Cloud Bigtable, 

• Apache Kafka message broker 
for streaming data

• Apache Storm for batch
distributed processing 
(replaying) of streaming data 
with GeoMesa

• Apache Spark for large-scale 
analytics of stored (batch) and 
streaming data

Image source

https://www.geomesa.org/documentation/stable/user/architecture.html


Technology stack supported in GeoMesa

Streaming 

Persisting

Analyzing



Lambda Architecture revisited with GeoMesa 
Geospatial intrinsic support 

Accumulo, 
Cassandra, BigTable, 
Hbase, DynamoDB

Geo-referenced 
Tweets Event 
stream

Data batches
Batch processor

Persisting each 
tweet for delayed 
processing

Real-time processing of trending 
topics (processing each coming 
tweet)

Stream processor

Kafka
cluster

Batch storage
Distributed datastores

Spark OR Hadoop 
MapReduce

Batch layer

Speed layer

Generating daily topics 
report from persisted 
batches of tweets 

Spark Streaming, 
Storm

GeoServer

Mapping 

application

Mobile app

Open layers

Jupyter

Geo-referenced 
Tweets Event 
stream

Serving layer



Spatial Analytic Pipeline with GeoMesa encapsulated

Image source

https://www.geomesa.org/assets/outreach/dcdw_geomesa_final.pdf


JSON examples for geo-referenced Tweets

{ "geo": null, "coordinates": null, "place": { "id": "07d9db48bc083000", "url": 

"https://api.twitter.com/1.1/geo/id/07d9db48bc083000.json", "place_type": "poi", 

"name": "McIntosh Lake", "full_name": "McIntosh Lake", "country_code": "US", 

"country": "United States", "bounding_box": { "type": "Polygon", "coordinates": [ [ [ -

105.14544, 40.192138 ], [ -105.14544, 40.192138 ], [ -105.14544, 40.192138 ], [ -

105.14544, 40.192138 ] ] ] }, "attributes": { } } } 

Tweet with Twitter Place

{ "geo": { "type": "Point", "coordinates": [ 40.74118764, -73.9998279 ] }, "coordinates": { "type": "Point", 
"coordinates": [ -73.9998279, 40.74118764 ] }, "place": { "id": "01a9a39529b27f36", "url": 
"https://api.twitter.com/1.1/geo/id/01a9a39529b27f36.json", "place_type": "city", "name": "Manhattan", 
"full_name": "Manhattan, NY", "country_code": "US", "country": "United States", "bounding_box": { "type": 
"Polygon", "coordinates": [ [ [ -74.026675, 40.683935 ], [ -74.026675, 40.877483 ], [ -73.910408, 40.877483 ], [ -
73.910408, 40.683935 ] ] ] }, "attributes": { } } } 

Tweet with exact location

Code source

https://developer.twitter.com/en/docs/twitter-api/v1/data-dictionary/object-model/geo


Example geo-Query

• Find the tweets near Bologna 
which were re-tweeted eight  
times at least

• SELECT * FROM tweetsDF
WHERE
retweetsCount > 8
AND (lat > 44.5 AND lat < 44.7)
AND (lon > 11.3 AND lon < 
11.5)

• This is inefficient

• We need specialized 
libraries

SELECT * FROM tweetsDF, cities WHERE

retweetsCount > 8

AND ST_Contains(tweetsDF.geom, 

city.geom)

AND cities = “Bologna”

SELECT * FROM tweetsDF, cities WHERE

retweetsCount > 8

AND ST_dwithin(tweets.geom, city.geom, 

3000)
AND cities = “Bologna”



Tweeting while Driving : GeoMesa

Image source

https://www.geomesa.org/assets/outreach/dcdw_geomesa_final.pdf


Tweeting while Driving Heatmap: GeoMesa 

Image source

https://www.geomesa.org/assets/outreach/dcdw_geomesa_final.pdf


Geospatial Indexing in GeoMesa
• Dynamic indexing

• Geohash to encode geospatial data

• The backing datastore of GeoMesa is 
Accumulo

• Key/value store, with an indexing based on 
the lexicographical ordering of the keys

• Requires mapping 2-D coordinates into a 
single dimension (Accumulo keys)

• Given a query polygon, find the list with 
minimum number of geohashes covering the 
polygon

• Shaded red are Geohashes that constitute 
prefixes that remain in the result set

• Dark-shaded geohashes are rejected, 
because they do not intersect the covering 
polygon

Image  source

https://www.geomesa.org/documentation/stable/tutorials/geohash-substrings.html


Geospatial Indexing in GeoMesa

Two basic types based on space-filling curves
• Z2

• A two-dimensional Z-order curve to index latitude and longitude
for point vector data. 

• Created if the feature type has the geometry type Point. 

• xz2
• uses a 2-D implementation of XZ-ordering [1] to index latitude

and longitude for non-point vector data (lines and polygons).
• An extension of Z-ordering designed for spatially objects with 

extents (i.e., non-point geometries such as line strings or 
polygons). 

• Created if the feature type has a non-Point geometry. 

https://www.geomesa.org/documentation/stable/user/datastores/index_overview.html#ref1

