
Designing Distributed Geospatial
Data-Intensive Applications

Ph.D. Course, 2022

Instructors:

Prof. Luca Foschini, Associate Professor &

Dr. Isam Mashhour Al Jawarneh, Postdoctoral Research Fellow

{isam.aljawarneh3, Luca.foschini}@unibo.it

Department of Computer Science and Engineering (DISI), Università di Bologna

Part 2
Designing highly efficient geospatial

data-intensive solutions

22nd July 2022

Spatial join

• Spatial joins are essential in spatial
data analysis

• Combining data from various
tables by exploiting spatial
relationships (contains, within,
etc.,) as the join key

• Most kinds of spatial analysis
can be expressed as spatial
joins

Spatial join

SQL-like Example

Spatial joins are joins of
two relations, with a
geospatial predicate
function within the
WHERE clause (SQL)

-- how many stations within 1 mile range of each zip code?

SELECT

zip_code AS zip,

ANY_VALUE(zip_code_geom) AS polygon,

COUNT(*) AS bike_stations

FROM

`bigquery-public-data.new_york.citibike_stations` AS bike_stations,

`bigquery-public-data.geo_us_boundaries.zip_codes` AS zip_codes

WHERE ST_DWithin(
zip_codes.zip_code_geom,

ST_GeogPoint(bike_stations.longitude, bike_stations.latitude),

1609.34)

GROUP BY zip

ORDER BY bike_stations DESC

Code source

https://cloud.google.com/bigquery/docs/geospatial-data

Types of Spatial Join
Intersect Within a distance

Completely within

Based on the spatial

relationships

equalsClosest

Images sources

https://gisgeography.com/spatial-join/

Spatial join examples

1. Supermarkets (points) are within a specific neighborhood
(polygon). Spatial join affix neighborhood attributes to
supermarket locations.

2. Every district (polygon) is responsible for maintaining its
roads (lines). Using spatial join, each road record will add
a column specifying to which district it belongs.

3. Cars (points) circulating in city roads (lines). By using
spatial join, we can specify the road segment which the
car navigated at a specific moment.

Parametrized spatial data

Embedding area polygons

Overlaying maps

Spatial join

● given: spatial objects o1, o2

find: { oi ∈ o1, oj∈ o2 | θ(oi.geometry, oj.geometry)}

with θ : ==, intersects, within

● A kind of Theta-join, which is computationally expensive

○ Links tables based on a spatial relationship instead of equality between two attributes

● Spatial join is a set of all pairs that is formed by pairing two geo-referenced

datasets while applying a spatial predicate (e.g., intersection, inclusion, etc.,)

○ The two participating sets can be representing multidimensional spatial

objects.

■ An example spatial join “finding boroughs to which each GPS-represented spatial point

(volunteer) belongs, a.k.a. geofencing”,

■ which requires joining spatial points with a master table representing boroughs

Example spatial join

● Find all the gas stations within 10 miles of my office

● In relational algebra terms:
𝜋𝑛𝑎𝑚𝑒(𝑠𝑡𝑎𝑡𝑖𝑜𝑛𝑠 ⋈ 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛,𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 <10 𝑜𝑓𝑓𝑖𝑐𝑒𝑠)

select distinct s.name from stations

s, offices o where

distance(s.location,o.location) < 10)

Naïve spatial join

● Naive evaluation of spatial joins (nested loop

join) too inefficient

● Input: O1, O2 //objects

● Result = {∅}

○ for all oi ∈ o1 do

■ for all oj ∈ o2 do

● If θ ((oi.geometry, oj.geometry)

result = result ∪ [oi,oj]

How many comparisons?!

Filter-refine approach
● 2 steps

○ Filter step

■ Determination of possible hits by

evaluation on spatial

approximation (lower costs)

○ Refinement step

■ Evaluation on accurate geometry only

for objects of the

filter step

Input: O1, O2 //spatial objects

result = {∅}

for all oi ∈ o1 do

for all oj j o2 do

If θ (MBR(oi.geometry), MBR(oj.geometry))
If θ ((oi.geometry, oj.geometry)
result = result ∪ [oi,oj]

How many comparisons?!

For efficient spatial queries,

spatial indexing is essential

Shapefile, NYC

Image sourceassigning trips pickups to city zones

(districts) is an example of a spatial join

taxi dataset

https://towardsdatascience.com/geospatial-operations-at-scale-with-dask-and-geopandas-4d92d00eb7e8

import geopandas as gpd

from shapely.geometry import Point

df = gpd.read_file('taxi_zones.shp').to_crs({'init': 'epsg:4326'})

df = df.drop(['Shape_Area', 'Shape_Leng', 'OBJECTID'], axis=1)

gpd.sjoin(gpd.GeoDataFrame(crs={'init': 'epsg:4326'},

geometry=[Point(-73.966, 40.78)]),

df, how='left', op='within')

Code source

https://towardsdatascience.com/geospatial-operations-at-scale-with-dask-and-geopandas-4d92d00eb7e8

Query Test

• Proximity and containment queries

executed on a circular area centered
on Bologna

• Center in (44.4949,11.3426)

• Radius range from 500 m to 50 km

What kind of representation for spatial data?

• So, selected spatial data representation should
facilitate spatial operations
• e.g., facilitates pruning on data retrieval

• The most relevant data structure for representing
spatial data is the one that is based on spatial
occupancy
• Decomposing the embedding space into

buckets (i.e., regions)
• Commonly known as ‘bucketing methods’

Spatial data structures

Spatial Indexing
● Shape-aware organization of spatial data (objects & embedding

space), such that it enables pruning the search space in order to

answer a spatial query

○ For supporting spatial selection, join and proximity

● Two approaches

○ Specialized spatial index structures: e.g., R-Tree, PR quadtree, KD

tree, Bin-tree, etc.,

○ Dimensionality reduction: transform multidimensional

representation of spatial objects (and space) into a single

dimension

■ Then apply a linear indexing (such as B+-tree)

Supporting data structures

Linear & single-dimension data structures:

Indexing

Data access

• Queries normally access a small portion of data
• Accessing the minimum number of tuples is much faster (what is

the relevant path?)

• Design choices affecting the path:
• Data arrangement

• Sequential files, linked list

• Index types
• Linear index or tree-based or a mix of both!

• Caching computations

Basic operations (in relational algebra and NoSQL)

– set operations (e.g., union)
– selection and projection
– join

Selective queries

• Selection query:

SELECT *
FROM R
WHERE <condition>

• This is fine in case you are retrieving a large portion (e.g., >80) of the
tuples.

• Otherwise, if your query is highly selective (predicate selectivity is
low), returning only a small portion of the tuples, then indexing
provides performance optimization

Selectivity

•An indicator of how much
data is retrieved by applying a
selection predicate
• A fractional number between 0

and 1
• Selectivity 1 means all data rows will

be retrieved

• Selectivity 0 means that no data
rows will be retrieved

• Useful for estimating the cost
associated with a given access
method

• Example

• Table Employee with 10000 rows

• Select * from Employee

• Query selectivity = 1

• Select * from Employee
where EmpID = 123

• Selectivity = 1/10000 =
0.0001

• Point queries are typically
very highly: We need
indexing

Unindexed data

For point queries: we
need full table scan
for unindexed data

Indexing

• Think of huge data sets

• Do not fit in fast memory

• Efficient ways for insert, delete and search

• e.g., range query search

• keys point to data → indexing

• Separate files (index files) containing key/value pairs

• Keys are associated with pointers to the real data tuples (record
files)

• Impose an order or organization on index files using a tree
structure

• The most common tree indexing is B-tree for big disk-based data

Indexes

• To avoid full table scans, we need indexes

• An index on an attribute helps finding records
with specific values on that attribute without the
need to do an exhaustive full scan

Indexing

Heuristic overview

Indexed scan

Typically, the following
applies:

• Indexing adds a sorted
data structure for
optimizing query
efficiency

• Query searches for
specific rows in the index
structure, then the
pointer finds the required
information

• Indexing reduces the
number of rows to
search: in this case from
13 to 4!

Two-level indexing

• With too many records, the index
size grow exponentially, that is too
big to fit in the fast memory

• Obviously, we need a second
level indexing probably on
non-unique fields

• Linear index is disk-resident

• Second-level index is
memory-resident

Why not linear indexing

• Linear indexing is only efficient when database is static

• Insertion and deletion is rare

• Applications on databases share the following characteristics:

1. Big number of records updated frequently

2. Search queries require one or several keys

3. Key range queries or min/max queries are used

• Better data structures must be used: Trees!

B+ tree

• B+ tree stores records only at the leaf nodes

• Internal nodes store key values, they are utilized only as
placeholders to guide the search.

• This means that internal nodes differ significantly from
leaf nodes (in structure)

• Internal nodes store keys to guide the search,
associating each key with a pointer to a child B+ tree
node

• Actual records reside solely in leaf nodes,

• But sometimes leaf nodes store keys and pointers to
real records in an independent disk file, in case
the B+ tree is being solely utilized as an index

• The leaf nodes of a B+ tree are typically linked together
in a doubly linked list structure (in-order)

• Advantages
• efficient traversal & search performance, memory
efficiency

Internal search nodes

Leaf data nodes

Example B+ tree

B+ trees are exceptionally
good for range queries

76

66 89

33 44

A B

67

C

82

D

95 99

E F

B+ Trees

• But how do those fit into our discussion about geospatial
data!

• In multidimensional space, there is no unique ordering! Not

possible to use B+ trees

• Search trees such as B-trees, are designed for searching
on a one-dimensional key
• Some databases require support for multiple keys

Why multidimensional indexing

• Having a set of geometrical objects (points,
lines, polygons)

• The problem is to find a proper organization on
disk, such that we enable pruning the search
space while answering a spatial query (point,
range, kNN)

K nearest neighbors

● Given millions of mobility points, such as

taxi pickups, how do we find the closest

pickup trips to a query point

● An brute-force solution

(1) Calculate the distances between every

point and the query point

(2) Sort points by their distance in reference

to the query point (in ascending order)

(3) Return the first K points that are the

nearest

This is an inefficient solution for millions of

points

2

1

3

4

Range and radius queries (Window query)

● Find all points confined within

a rectangle (range query) or

a circle (radius or proximity

query)

• The brute-force approach is

to check all points.

• Inefficient if the datasets are

very big and receives hundreds

of queries every second

What do we need

● For efficient NN and range queries, at scale, spatial index worth the

effort

○ But what is the read/write ratio for your spatial data.

○ Remember that indexes are expensive!

● An enduring principle shared by all spatial structures for efficient

spatial searches is what is known as ‘branch and bound’

○ Organizing spatial data in tree-like structures which allows pruning

the search space upon receiving a spatial query

○ By discarding the tree branches that do not meet the spatial
predicate (search criteria) → skipping data

Multidimensional search

• Database of city records

• Vehicle ID & long/latitude

• B-tree is efficient for searches on Vehicle
ID or one of the coordinates, Long OR lat.

• However, not common for two-
dimensional space

• Another possible solution

• Combining the coordinates,
producing a single key: dimension
reduction

• Not good for geospatial range
searches

Types of spatial data structures

• Two types of spatial data structures

• Data-driven

• Based upon a partitioning of the data items themselves

• R-trees and KD-trees

• Space-driven

• Organized by a partitioning of the embedding space,
akin to order-preserving hash functions

• quad trees and grid files

Space-driven spatial data structures

• Dividing the embedding 2-D space into grid cells (equal-
sized OR based on data distribution)
• Mapping spatial object’s MBRs to cells based on spatial

relationship (intersects, overlaps)

• Can be used in spatial extensions with B+-tree,
• which is dynamic and efficient in memory space and query time

• Some examples
• Fixed grid index

• Quadtree

Fixed grid index

• Multidimensional array
of equal-sized cells

• Each one is
attached to a list of
spatial objects
• intersecting or

overlapping with
the cell

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

2

1

3

4

5

6

15

16

A

B

A

A

B

B

.

.

space filing curves: z-order

• These grid hierarchy cells are numbered in a linear

fashion called space-filling curves.

• useful because it partially preserves proximity
(spatial co-locality)→ two cells geographically

nearby in 2D plane (flattened Earth) are highly likely

to be close in the sequential order

• Various spatial filling curves → we focus on z-

order curve

• Z-order labels each cell similar to a complete quadtree
and numbers each quadrant in binary bit string format

00, 01, 10, 11

• An associated bit string for each at each level,

corresponding to the level cell belongs to (01 in level 1,
and 0101 in level 2) → bit interleaving

• 1110 is obtained by selecting 11 at the top-level and

10 within the top-level quadrant

• Lexicographical order of the bit strings specifies the order

that is imposed on all cells of a subdivision

00 01

10
11

0100 0101

0110 0111

1100 1101

1110 1111

0001

00110010

1001

10111010

1000

0000

• mapping multidimensional data to single-dimension with locality
preserved!

space filing curves: z-order (cont.)

• Space Filling Curves are used to co-locate related data
in the same set of files

• map multidimensional data to single dimension
while preserving spatial co-locality

• NoSQL databases support only single dimensions

• Typically, a sorted key-value index

• Spatial data is multidimensional

• Use Space Filling Curves

• Divide the embedding space into grid cells

• order grid cells with a space filling
curve (Z-Order curves)

• Label grid cells in relative to the order that the
curve
passes through them

• Associate a byte representation of the label to
the data contained in each grid cell

Image source

https://www.geomesa.org/assets/outreach/foss4g-2021-into-to-big-data.pdf

Calculation of Z-order values

• Bit-interleaving

• Quadrant z-value →
alternating bits from the
binary representations
of x and y coordinates

X Y

01 10

0 1 1 0

Single-dimension indexing of spatial data
• One-dimensional orderings

• Mapping multidimension to one dimension

• preserve spatial proximity

• Insert Z-elements into a B-Tree (single dimension indexing

structure) (cf. UB-Tree) as spatial keys in lexicographical

order (z-order)

• Range & containment queries (with rectangle r) are then

simplified

• Because of the proximity-preserving of z-ordering (spatial

co-locality)

• Find z-elements of r (covering z-elements)

• For each z-element (z) in the covering scan the part of

the B-tree leaf sequence containing z as a prefix (filter

step)

• Apply the actual geometrical operation (costly) to

check for containment (refine step)

• False positives

Image source

• Partition the space with a

uniform grid

• Attaching numbers to cells so

that neighboring cells have

similar numbers

https://www.researchgate.net/publication/353142012_An_Efficient_Point_Data_Indexing_Structure_for_Multidimensional_Range_Queries

Spatial query optimizer for NoSQL

• Overlay the embedding
space with a fixed-grid
network Shard 1 Shard 3

shard
1

shard
2

shard
3

shard
4

B-tree

• Generate a geohash

covering and a list of

interacting points

• Impose B-tree index on

the geohash covering &

the interacting spatial

points

• MongoDB router

forwards requests to

few shards, pruning the

search space

Quadtree

• Very popular spatial indexing structure
• A form of grid indexing with varying sizes of grid cells that depend

on the data distribution (i.e., density of the spatial objects)

• Each node in the tree covers a bounding box for part of the
embedding space being indexed,
• root node covers the entire embedding space

Quadtree

• Recursive division of the embedding space into quadrants (four subdivisions) until
each quadrant hosts a prespecified number of points

• Each node

• A leaf node containing indexed spatial points, or

• An internal node, having exactly four children (Quad), one child for each
quadrant obtained by recursively halving the area in both directions

00 0100 0101

0110 0111

10
1100 1101

1110 1111

A

B

root

00 01 10 11

00 01 10 11 00 01 10 11

A

A A B B

PR quadtree insertion

A

NE

C

NW

B

SW SE

D E F

(70,55)

0

0

127

127

A
(20,75)

B

C
D

(16,16) (34,28)
F

E

(68,68) (66,83)

• Recursive decomposition so that only one single point in each leaf node

• approximately half of the leaf nodes will contain no data field

PR quadtree point search

A

NE

C

NW

B

SW SE

D E F

(70,55)

0

0

127

127

A
(20,75)

B

C
D

(16,16) (34,28)
F

E

(68,68) (66,83)

Search for (34,28)

[0,63]

[0
,6

3
]

[32,63]

[0
,3

1
]

PR quadtree region search

A

NE

C

NW

B

SW SE

D E F

(70,55)

0

0

127

127

A
(20,75)

B

C D

(16,16) (34,28)
F

E

(68,68) (66,83)

• Search for points that are at most 15 units far from the search point Q (40,40)
• Even C does not fall within the circle, we have to search the NW quadrant, because part of the circle is

enclosed within it!

[0,63]

[0
,6

3
]

[32,63]

[0
,3

1
]

Q

Geohash

• For geocoding points as a short string and use them in web URLs

• It is basically a binary string, with every character indicating alternating divisions of
a longitude/latitude rectangle

• Split the rectangle into two equal sized splits with Geohash codes ("0" and "1”).

• Objects residing on left have Geohash beginning with ‘0’ , while those on right
half have a Geohash beginning with "1“

• Assign a plain text (base-32 and base-36) encoding

• The length of Geohash ranges from 1 to 12 → longer Geohash has a granular
precision (covering smaller area)

Image source

https://gistbok.ucgis.org/bok-topics/2018-quarter-02/spatial-indexing#Space

Geohash covering

S2 explained

• framework for decomposing the unit sphere
into a hierarchy of cells

• Hierarchical decomposition of sphere into
cells

• approximate regions using cells

• cell edges appear to be curved

• straight lines on the sphere (similar to
the routes that airplanes fly)

• Levels (number of times the cell has been
subdivided (starting with a face cell))

• range from 0 to 30

• top level→ projecting the six faces of a
cube onto the unit sphere,

• lower levels→ subdividing each cell into
four children recursively

• The smallest cells at level 30 are
called leaf cells; there are 6 * 430 of
them in total, each about 1cm
across on the Earth’s surface. Image source

Level Min Area Max Area

0 85,011,012 km2 85,011,012 km2

1 21,252,753 km2 21,252,753 km2

12 3.31 km2 6.38 km2

30 0.48 cm2 0.93 cm2

https://s2geometry.io/devguide/s2cell_hierarchy.html

S2 explained (cont.)

• useful for spatial indexing
and for approximating
regions (polygons) as a
collection of cells (S2
coverer)
• Points (spatial point objects)

represented as leaf cells
• Regions (polygons) are

represented as collections of
cells

• Each cell is identified uniquely
by a 64-bit S2CellId

approximation of Hawaii as a collection of S2 cells

Google’s S2

Image source
Image generated by this tool

S2 Coverer for part of Bologna

• S2 cells are ordered sequentially along a space-filling curve

• S2 space-filling curve
• six Hilbert curves linked together to form a single

continuous loop over the entire sphere

Im
a

g
e

 s
o

u
rc

e

draw a one-dimensional line that fill every part of a two-

dimensional space

https://s2geometry.io/devguide/s2cell_hierarchy.html
http://s2.sidewalklabs.com/regioncoverer/
https://community.khronos.org/t/space-filling-curve-primitive/50184

S2 Cell Hierarchy

• Enumerate cells along a Hilbert
space-filling curve

• fast to encode and decode (bit
flipping)

• preserves spatial co-locality

Image source

o
n

e
 o

f
6
 e

a
rt

h
 f

a
c

e
s

https://docs.google.com/presentation/d/1Hl4KapfAENAOf4gv-pSngKwvS_jwNVHRPZTTDzXXn6Q/edit#slide=id.i43

Google’s S2

• Geofence Earth with a planet-size
cube

• fill each with a Hilbert curve (yellow)

• project the Hilbert curve onto the
Earth’s surface (red)

• Efficient approach to represent
locations as single numbers

Our locations are represented as

a specific point on a long line

Image source

https://medium.com/sidewalk-talk/s2-cells-and-space-filling-curves-keys-to-building-better-digital-map-tools-for-cities-a312aa5e2f59

Example S2 covering

• Given a region, find a set of S2 covering cells
• Parameters: max number of cells, max cell

level, min cell level

• Max level :13, max cells: 45

• 132587f,1325884,1325888c,132588f,1325894,1
32589c,13258b,13258c1,13258c7,13258c9,132
58cb,13258eac,1325f35,1325f37,1325f5,1325f
61,1325f67,132f58b,132f58d,132f593,132f594c,
132f5c4,132f5d1,132f5d7,132f5dc,132f5f,132f6
4,132f7b4,132f7cc,132f7d4

Generated by Region Coverer

Max #

cells

Median ratio

(covering area
/ region area)

Worst ratio

4 3.31 15.83

8 1.98 4.03

20 1.42 1.94

100 1.11 1.19

https://s2.sidewalklabs.com/regioncoverer

Example S2 covering (granular levels)

Generated by Region Coverer

• Max level :30, max cells: 100

• finer covering set of S2 cells

• tradeoff

• more precise coverage →
fewer false positives

• more cells → added
computational complexity

• cell “levels” (meaning size)

• maximum number of cells covering an
area

https://s2.sidewalklabs.com/regioncoverer

Data-driven spatial data structures

• data-driven→ based upon a partitioning of the
data items themselves

• Utilizes spatial containment relationship in place
of the order of the index.

• Structures that adapt themselves to spatial
object’s MBRs

KD Tree insertion

A [X: 18, y: 34]

0

0

127

127

C

B

A

D

E

• Recursive decomposition so that only one single point in each leaf node

• approximately half of the leaf nodes will contain no data field

X

B[X: 15, y: 69]

Y

C[X: 71, y: 38]

D[X: 55, y: 100]
X

E[X: 90, y: 20]

discriminator

R-tree

● Minimum bounding rectangle (MBR)

○ Group geographically nearby objects in same leaf nodes

○ Each node represents the smallest rectangle that encloses

child nodes

○ Insertion: Find the node that requires the least expansion

to include the new object

● Disk-resident
● Index nodes (internal search nodes) and data (leaf) nodes

○ All leaf nodes on the same level

○ Spatial objects belong to one of the leaf nodes only

■ But MBRs may overlap (a problem) such as R1 and R2

○ If the R-tree is used solely as an index, leaf nodes contain

pointers to spatial objects

J

M

L

N
K

O

P

JR1

R2

R1 K L M

R1

J L M

R1

K N

R2

R1 R2

O P

R3
R3

MBR

Another R-Tree example

A

B

C

D
E

F
G

H

I

J

P1

P2

P3

P4

F GD E

H I JA B C

Another R-Tree example

A

B

C

D
E

F
G

H

I

J

P1

P2

P3

P4

P1 P2 P3 P4

F GD E

H I JA B C

P5 P6

P5

P6

Efficient range query algorithm

• Indexed data (using R-Tree or PR Quadtree) means that
data is represented by MBRs

• So, given the query window MBR, it is easy to do a filter
stage first, checking which MBRs from the tree index are
contained within the MBR of the query window

• For each of those branches, we retrieve the spatial
objects

• Apply the refine stage checking whether the candidate
truly satisfies the predicate (within, intersects, overlaps,
etc.)

R-trees : Search

P1 P2 P3 P4

F GD E

H I JA B C

P5 P6

A

B

C

D
E

F
G

H

I

J

P1

P2

P3

P4

point query may follow several paths

(tree branches)

72

R-tree, Range Query

20 4 6 8 10

2

4

6

8

10

x axis

y axis

b

c

a

E1d

e f

g h

i j

k

l

m

E2

a b c d e

E
1 E2

E3 E4 E5

Root

E
1 E2

E3
E
4

f g h

E
5

l m

E7

i j k

E6

E6 E7

73

Range Query

20 4 6 8 10

2

4

6

8

10

x axis

y axis

b

c

a

E1d

e f

g h

i j

k

l

m

E2

a b c d e

E
1 E2

E3 E4 E5

Root

E
1 E2

E3
E
4

f g h

E
5

l m

E7

i j k

E6

E6 E7

R-Tree construction

a

d

c

e

f

R1 R2

R3 R4 R5 R6

b

a b c d

g

h

e f g h

R3

R4

R5

R6

R1

R2

Query window

Range query in R-Tree

a

d

c

e

f

R1 R2

R3 R4 R5 R6

b

a b c d

g

h

e f g h

R3

R4

R5

R6

R1

R2

Query window

R-Tree example

A visualization of an R-tree for 138k

populated places on Earth
Image source

a query window which does not intersect the

bounding rectangle cannot intersect any of its

contained objects → MBR join

https://blog.mapbox.com/a-dive-into-spatial-search-algorithms-ebd0c5e39d2a

R+ - Trees

• Disjoint decomposition of the embedding space

• No overlaps between MBRs

• Spatial objects appear in all MBRs they intersect with

• Efficient point query as only one path need to be scanned from root to
leaf

R2

R3 R4 R5 R6

R1

a bd g h c i e fh i c i

Geospatial indexing methods comparison

Index storage Efficient query

type

Comments

R-tree Disk-resident Point, window,

kNN

KD-tree In-memory Point, window,

kNN

Inefficient for

highly skewed

data

Quad-tree In-memory Point, window,

kNN

Inefficient for

highly skewed

data

Z-curve + B+-

tree

Disk-resident Point, window Order of Z-curve

has an impact on

performance

How to choose a spatial data structure

• performance factors

• Preprocessing Cost. Index construction cost

• Storage Cost. Index storage

• Query Cost. The search time or query cost by utilizing the index
structure

• Space-driven spatial index → structure of the index is created first, then
data is added step-wise

• Does not require changes to the index structure for insertion

• Facilitates merging (fusing) heterogeneous data sources indexed
with common grid

• Data-driven structures → efficient for storage and faster in search scans,
but tied to specific data

Storage and processing of big
geospatial data

Example Cloud software frameworks
(Geomesa, GeoSpark, GeoFlink, geospatial
in MongoDB, GeoSparkViz, HadoopViz, etc.)

Problem

• Big geospatial data

• GDELT: Global Database of Event, Language, and Tone

• ~225-250 million records

• Mobility data is gathered by cell phone providers

• Millions of records

• How do we handle big vector geospatial data?

• millions to billions of rows of vector geospatial data
(mostly points) arriving every day?

GeoMesa

• Constellation of tools for querying and analytics of big geospatial data on
distributed computing systems.
• Streaming, persisting, managing, and analyzing spatial data at scale, with QoS guarantees

• Efficient spatial indexing atop HBase, Bigtable and Cassandra storage
systems for scalable storage of vector geospatial data (point, line,
polygon)

• Near real time geospatial data stream processing atop Apache Kafka

• Supports Apache Spark for geospatial big data stream & batch
processing

• Integrate well with mapping clients (Web Feature/Mapping Service, WFS
and WMS)

• In summary, all the Lambda architecture layers are supported, in addition to
mapping (geo-visualization)

GeoMesa Architectural Overview
• Scalable, cloud-based data

storage

• Apache Accumulo,
Apache HBase, and Google
Cloud Bigtable,

• Apache Kafka message broker
for streaming data

• Apache Storm for batch
distributed processing
(replaying) of streaming data
with GeoMesa

• Apache Spark for large-scale
analytics of stored (batch) and
streaming data

Image source

https://www.geomesa.org/documentation/stable/user/architecture.html

Technology stack supported in GeoMesa

Streaming

Persisting

Analyzing

Lambda Architecture revisited with GeoMesa
Geospatial intrinsic support

Accumulo,
Cassandra, BigTable,
Hbase, DynamoDB

Geo-referenced
Tweets Event
stream

Data batches
Batch processor

Persisting each
tweet for delayed
processing

Real-time processing of trending
topics (processing each coming
tweet)

Stream processor

Kafka
cluster

Batch storage
Distributed datastores

Spark OR Hadoop
MapReduce

Batch layer

Speed layer

Generating daily topics
report from persisted
batches of tweets

Spark Streaming,
Storm

GeoServer

Mapping

application

Mobile app

Open layers

Jupyter

Geo-referenced
Tweets Event
stream

Serving layer

Spatial Analytic Pipeline with GeoMesa encapsulated

Image source

https://www.geomesa.org/assets/outreach/dcdw_geomesa_final.pdf

JSON examples for geo-referenced Tweets

{ "geo": null, "coordinates": null, "place": { "id": "07d9db48bc083000", "url":

"https://api.twitter.com/1.1/geo/id/07d9db48bc083000.json", "place_type": "poi",

"name": "McIntosh Lake", "full_name": "McIntosh Lake", "country_code": "US",

"country": "United States", "bounding_box": { "type": "Polygon", "coordinates": [[[-

105.14544, 40.192138], [-105.14544, 40.192138], [-105.14544, 40.192138], [-

105.14544, 40.192138]]] }, "attributes": { } } }

Tweet with Twitter Place

{ "geo": { "type": "Point", "coordinates": [40.74118764, -73.9998279] }, "coordinates": { "type": "Point",
"coordinates": [-73.9998279, 40.74118764] }, "place": { "id": "01a9a39529b27f36", "url":
"https://api.twitter.com/1.1/geo/id/01a9a39529b27f36.json", "place_type": "city", "name": "Manhattan",
"full_name": "Manhattan, NY", "country_code": "US", "country": "United States", "bounding_box": { "type":
"Polygon", "coordinates": [[[-74.026675, 40.683935], [-74.026675, 40.877483], [-73.910408, 40.877483], [-
73.910408, 40.683935]]] }, "attributes": { } } }

Tweet with exact location

Code source

https://developer.twitter.com/en/docs/twitter-api/v1/data-dictionary/object-model/geo

Example geo-Query

• Find the tweets near Bologna
which were re-tweeted eight
times at least

• SELECT * FROM tweetsDF
WHERE
retweetsCount > 8
AND (lat > 44.5 AND lat < 44.7)
AND (lon > 11.3 AND lon <
11.5)

• This is inefficient

• We need specialized
libraries

SELECT * FROM tweetsDF, cities WHERE

retweetsCount > 8

AND ST_Contains(tweetsDF.geom,

city.geom)

AND cities = “Bologna”

SELECT * FROM tweetsDF, cities WHERE

retweetsCount > 8

AND ST_dwithin(tweets.geom, city.geom,

3000)
AND cities = “Bologna”

Tweeting while Driving : GeoMesa

Image source

https://www.geomesa.org/assets/outreach/dcdw_geomesa_final.pdf

Tweeting while Driving Heatmap: GeoMesa

Image source

https://www.geomesa.org/assets/outreach/dcdw_geomesa_final.pdf

Geospatial Indexing in GeoMesa
• Dynamic indexing

• Geohash to encode geospatial data

• The backing datastore of GeoMesa is
Accumulo

• Key/value store, with an indexing based on
the lexicographical ordering of the keys

• Requires mapping 2-D coordinates into a
single dimension (Accumulo keys)

• Given a query polygon, find the list with
minimum number of geohashes covering the
polygon

• Shaded red are Geohashes that constitute
prefixes that remain in the result set

• Dark-shaded geohashes are rejected,
because they do not intersect the covering
polygon

Image source

https://www.geomesa.org/documentation/stable/tutorials/geohash-substrings.html

Geospatial Indexing in GeoMesa

Two basic types based on space-filling curves
• Z2

• A two-dimensional Z-order curve to index latitude and longitude
for point vector data.

• Created if the feature type has the geometry type Point.

• xz2
• uses a 2-D implementation of XZ-ordering [1] to index latitude

and longitude for non-point vector data (lines and polygons).
• An extension of Z-ordering designed for spatially objects with

extents (i.e., non-point geometries such as line strings or
polygons).

• Created if the feature type has a non-Point geometry.

https://www.geomesa.org/documentation/stable/user/datastores/index_overview.html#ref1

