

Designing Distributed Geospatial Data-Intensive Applications

Ph.D. Course, 2022

Instructors:

Prof. Luca Foschini, Associate Professor &

Dr. Isam Mashhour Al Jawarneh, Postdoctoral Research Fellow

{isam.aljawarneh3, Luca.foschini}@unibo.it

Department of Computer Science and Engineering (DISI), Università di Bologna

Part 2

Designing highly efficient geospatial data-intensive solutions 22nd July 2022

Spatial join

- Spatial joins are essential in spatial data analysis
 - Combining data from various tables by exploiting spatial relationships (contains, within, etc.,) as the **join key**
 - Most kinds of spatial analysis can be expressed as spatial joins

SQL-like Example

Spatial joins are joins of two relations, with a geospatial predicate function within the WHERE clause (SQL)

-- how many stations within 1 mile range of each zip code? SELECT

zip_code AS zip,

ANY_VALUE(zip_code_geom) AS polygon,

COUNT(*) AS bike_stations

FROM

`bigquery-public-data.new_york.citibike_stations` AS bike_stations,

`bigquery-public-data.geo_us_boundaries.zip_codes` AS zip_codes WHERE ST DWithin(

zip_codes.zip_code_geom,

ST_GeogPoint(bike_stations.longitude, bike_stations.latitude),

1609.34)

GROUP BY zip

ORDER BY bike_stations DESC

Types of Spatial Join

Intersect

Within a distance

Based on the **spatial** relationships

Closest

Images sources

Completely within

equals

Spatial join examples

- 1. Supermarkets (**points**) are within a specific neighborhood (**polygon**). Spatial join affix neighborhood attributes to supermarket locations.
- 2. Every district (**polygon**) is responsible for maintaining its roads (**lines**). Using spatial join, each road record will add a column specifying to which district it belongs.
- 3. Cars (**points**) circulating in city roads (**lines**). By using spatial join, we can specify the road segment which the car navigated at a specific moment.

Parametrized spatial data

Embedding area polygons

Overlaying maps

Spatial join

$R1 \Join_{\theta} R2 = \sigma_{\theta} (R1 \times R2)$

- given: spatial objects o1, o2 find: { o_i ∈ o1, o_j ∈ o2 | θ(o_i.geometry, o_j.geometry)} with θ : ==, intersects, within
- A kind of Theta-join, which is computationally expensive
 - Links tables based on a **spatial relationship** instead of **equality** between two attributes
- Spatial join is a set of all pairs that is formed by **pairing** two **geo-referenced** datasets while applying a spatial predicate (e.g., **intersection**, **inclusion**, etc.,)
 - The two participating sets can be representing multidimensional spatial objects.
 - An example spatial join "finding boroughs to which each GPS-represented spatial point (volunteer) belongs, a.k.a. geofencing",
 - which requires joining spatial points with a master table representing boroughs

Example spatial join

- Find all the gas stations within 10 miles of my office
- In relational algebra terms: $\pi_{name}(stations \bowtie_{distance(location, location) < 10} offices)$

select distinct s.name from stations
s, offices o where
distance(s.location,o.location) < 10)</pre>

Naïve spatial join

- Naive evaluation of spatial joins (nested loop join) too inefficient
- Input: O1, O2 //objects
- Result = $\{\emptyset\}$
 - ∘ for all $o_i \in o1$ do
 - for all $o_j \in o2 do$
 - If θ ((o_i.geometry, o_j.geometry) result = result υ [o_i,o_j]

How many comparisons?!

Filter-refine approach

- 2 steps
 - Filter step
 - Determination of possible hits by evaluation on spatial approximation (lower costs)
 - Refinement step
 - Evaluation on accurate geometry only for objects of the filter step

```
Input: O1, O2 //spatial objects

result = {Ø}

for all o_i \in o1 do

for all o_j j o2 do

If \theta (MBR(o_i.geometry), MBR(o_j.geometry))

If \theta ((o_i.geometry, o_j.geometry)

result = result \cup [o_i, o_j]
```


How many comparisons?!

For efficient spatial queries, **spatial indexing** is essential

	LocationID	borough	geometry	zone
0	1	EWR	POLYGON ((-74.18445299999996 40.6949959999999,	Newark Airport
1	2	Queens	(POLYGON ((-73.82337597260663 40.6389870471767	Jamaica Bay
2	3	Bronx	POLYGON ((-73.84792614099985 40.87134223399991	Allerton/Pelham Gardens
3	4	Manhattan	POLYGON ((-73.97177410965318 40.72582128133705	Alphabet City
4	5	Staten Island	POLYGON ((-74.17421738099989 40.56256808599987	Arden Heights

Shapefile, NYC

Image source

	tpep_pickup_datetime	tpep_dropoff_datetime	pickup_longitude	pickup_latitude	dropoff_longitude	dropoff_latitude
(0 2016-05-01 00:00:00	2016-05-01 00:17:31	-73.985901	40.768040	-73.983986	40.730099
1	1 2016-05-01 00:00:00	2016-05-01 00:07:31	-73.991577	40.744751	-73.975700	40.765469
2	2 2016-05-01 00:00:00	2016-05-01 00:07:01	-73.993073	40.741573	-73.980995	40.744633
1	3 2016-05-01 00:00:00	2016-05-01 00:19:47	-73.991943	40.684601	-74.002258	40.733002
4	4 2016-05-01 00:00:00	2016-05-01 00:06:39	-74.005280	40.740192	-73.997498	40.737564

taxi dataset

assigning trips pickups to city zones (districts) is an example of a **spatial join**

Code source

import geopandas as gpd
from shapely.geometry import Point
df = gpd.read_file('taxi_zones.shp').to_crs({'init': 'epsg:4326'})
df = df.drop(['Shape_Area', 'Shape_Leng', 'OBJECTID'], axis=1)
gpd.sjoin(gpd.GeoDataFrame(crs={'init': 'epsg:4326'},
geometry=[Point(-73.966, 40.78)]),
df, how='left', op='within')

	geometry	index_right	LocationID	borough	zone
0	POINT (-73.96599999999999 40.78)	42	43	Manhattan	Central Park

Query Test

- Proximity and containment queries executed on a circular area centered on Bologna
- Center in (44.4949,11.3426)
- Radius range from 500 m to 50 km

What kind of representation for spatial data?

- So, selected spatial data representation should facilitate **spatial operations**
 - e.g., facilitates **pruning** on **data retrieval**
- The most relevant data structure for representing spatial data is the one that is based on spatial occupancy
 - Decomposing the embedding space into buckets (i.e., regions)
 - Commonly known as 'bucketing methods'

Spatial data structures

Spatial Indexing

- Shape-aware organization of spatial data (objects & embedding space), such that it enables pruning the search space in order to answer a spatial query
 - For supporting spatial **selection**, **join** and **proximity**
- Two approaches
 - Specialized spatial index structures: e.g., R-Tree, PR quadtree, KD tree, Bin-tree, etc.,
 - Dimensionality reduction: transform multidimensional representation of spatial objects (and space) into a single dimension
 - Then apply a linear indexing (such as B+-tree)

Supporting data structures Linear & single-dimension data structures: Indexing

Data access

- Queries normally access a small portion of data
 - Accessing the minimum number of tuples is much faster (what is the relevant path?)
- Design choices affecting the path:
 - Data arrangement
 - Sequential files, linked list
 - Index types
 - Linear index or tree-based or a mix of both!
 - Caching computations

Basic operations (in relational algebra and NoSQL)

- set operations (e.g., union)
- selection and projection
- join

Selective queries

• Selection query:

SELECT * FROM R WHERE <condition>

- This is fine in case you are retrieving a large portion (e.g., >80) of the tuples.
- Otherwise, if your query is highly selective (predicate selectivity is low), returning only a small portion of the tuples, then indexing provides performance optimization

Selectivity

- An indicator of how much data is retrieved by applying a selection predicate
 - A fractional number between 0 and 1
 - Selectivity 1 means all data rows will be retrieved
 - Selectivity 0 means that no data rows will be retrieved
 - Useful for estimating the cost associated with a given access method

- Example
 - Table Employee with 10000 rows
 - Select * from Employee
 - Query selectivity = 1
 - Select * from Employee where EmplD = 123
 - Selectivity = 1/10000 = 0.0001
 - Point queries are typically very highly: We need indexing

For point queries: we need full table scan for unindexed data

Indexing

- Think of huge data sets
 - Do not fit in **fast memory**
- Efficient ways for insert, delete and search
 - e.g., range query search
- keys point to data → indexing
 - Separate files (index files) containing key/value pairs
 - Keys are associated with pointers to the real data tuples (record files)
 - Impose an order or organization on index files using a tree structure
 - The most common tree indexing is **B-tree** for big disk-based data

- To avoid **full table scans**, we need indexes
 - An index on an attribute helps finding records with specific values on that attribute without the need to do an exhaustive full scan

Indexing

Heuristic overview

Item_ID	pointer
1	-201
2	-202
2	-204
2	-208
2	-210
2	-211
3	-203
4	-205
5	-206
6	-207
7	-209
8	-212
9	-213

Indexed scan

Typically, the following applies:

- Indexing adds a sorted data structure for optimizing query efficiency
- Query searches for specific rows in the index structure, then the **pointer** finds the required information
- Indexing reduces the number of rows to search: in this case from 13 to 4!

Two-level indexing

- With too many records, the index size grow **exponentially**, that is too big to fit in the **fast memory**
 - Obviously, we need a second level indexing probably on non-unique fields
 - Linear index is disk-resident
 - Second-level index is memory-resident

Why not linear indexing

- Linear indexing is only efficient when database is static
 Insertion and deletion is rare
- Applications on databases share the following characteristics:
 - 1. Big number of records **updated frequently**
 - 2. Search queries require one or several keys
 - 3. Key range queries or min/max queries are used
- Better data structures must be used: Trees!

B+ tree

- **B+ tree** stores records only at the **leaf nodes**
- Internal nodes store key values, they are utilized only as placeholders to guide the search.
 - This means that internal nodes differ significantly from **leaf** nodes (in structure)
 - Internal nodes store keys to guide the search, associating each key with a pointer to a child B+ tree node
 - Actual records reside solely in leaf nodes,
 - But sometimes leaf nodes store keys and pointers to real records in an independent disk file, in case the B+ tree is being solely utilized as an index
 - The leaf nodes of a B+ tree are typically linked together in a doubly linked list structure (in-order)
- Advantages
 - efficient traversal & search performance, memory efficiency

Internal search nodes

Leaf data nodes

Example B+ tree

B+ trees are exceptionally good for range queries

B+ Trees

- But how do those fit into our discussion about geospatial data!
- In multidimensional space, there is **no unique ordering**! Not possible to use B+ trees 🟵
- Search trees such as B-trees, are designed for searching on a one-dimensional key
 - Some databases require support for multiple keys

Why multidimensional indexing

- Having a set of geometrical **objects** (points, lines, polygons)
- The problem is to find a proper organization on disk, such that we enable pruning the search space while answering a spatial query (point, range, kNN)

K nearest neighbors

- Given millions of mobility points, such as taxi pickups, how do we find the closest pickup trips to a query point
- An brute-force solution
- (1) Calculate the distances between every point and the query point
- (2) Sort points by their distance in reference to the query point (in ascending order)
- (3) Return the first K points that are the nearest

This is an **inefficient** solution for millions of points

Range and radius queries (Window query)

- Find all points confined within a rectangle (range query) or a circle (radius or proximity query)
- The brute-force approach is to check all points.
 - Inefficient if the datasets are very big and receives hundreds of queries every second

What do we need

- For efficient NN and range queries, at scale, spatial index worth the effort
 - But what is the **read/write ratio** for your spatial data.
 - Remember that indexes are expensive!
- An enduring principle shared by all spatial structures for efficient spatial searches is what is known as '**branch and bound**'
 - Organizing spatial data in tree-like structures which allows pruning the search space upon receiving a spatial query
 - By discarding the tree branches that do not meet the spatial predicate (search criteria) → skipping data

Multidimensional search

- Database of city records
- Vehicle ID & long/latitude
 - B-tree is efficient for searches on Vehicle ID or one of the coordinates, Long OR lat.
 - However, not common for twodimensional space
 - Another possible solution
 - Combining the coordinates, producing a single key: dimension reduction
 - Not good for geospatial range searches

Types of spatial data structures

- Two types of spatial data structures
 - Data-driven
 - Based upon a partitioning of the data items themselves
 - R-trees and KD-trees
 - Space-driven
 - Organized by a partitioning of the embedding space, akin to order-preserving hash functions
 - quad trees and grid files

Space-driven spatial data structures

- Dividing the embedding 2-D space into grid cells (equalsized OR based on data distribution)
 - Mapping spatial object's MBRs to cells based on spatial relationship (intersects, overlaps)
 - Can be used in spatial extensions with B+-tree,
 - which is dynamic and efficient in memory space and query time
- Some examples
 - Fixed grid index
 - Quadtree

Fixed grid index

- Multidimensional **array** of equal-sized **cells**
 - Each one is attached to a list of spatial objects
 - intersecting or overlapping with the cell

space filing curves: z-order

- These grid hierarchy cells are numbered in a linear fashion called **space-filling** curves.
 - useful because it partially preserves proximity
 (spatial co-locality) → two cells geographically
 nearby in 2D plane (flattened Earth) are highly likely
 to be close in the sequential order
 - Various spatial filling curves → we focus on zorder curve
- Z-order labels each cell similar to a complete quadtree and numbers each quadrant in binary **bit string** format 00, 01, 10, 11
 - An associated bit string for each at each level, corresponding to the level cell belongs to (01 in level 1, and 0101 in level 2) → bit interleaving
 - 1110 is obtained by selecting 11 at the top-level and 10 within the top-level quadrant
 - Lexicographical order of the bit strings specifies the order that is imposed on all cells of a subdivision

• mapping *multidimensional* data to *single-dimension* with locality preserved!

space filing curves: z-order (cont.)

- Space Filling Curves are used to co-locate related data in the same set of files
 - map multidimensional data to single dimension while preserving spatial co-locality
- NoSQL databases support only single dimensions
 - Typically, a sorted key-value index
 - Spatial data is multidimensional
 - Use Space Filling Curves
 - Divide the embedding space into grid cells
 - order grid cells with a space filling curve (Z-Order curves)
 - Label grid cells in relative to the order that the curve
 - passes through them
 - Associate a byte representation of the label to the data contained in each grid cell

Image source

"GeoHash"

Calculation of Z-order values

• Bit-interleaving

 Quadrant z-value → alternating bits from the binary representations of x and y coordinates

11	0 <mark>1</mark> 01	0 <mark>1</mark> 11	1 <mark>101</mark>	1111
10	0 <mark>1</mark> 00	0 <mark>110</mark>	1 <mark>100</mark>	1110
01	0 <mark>0</mark> 01	0 <mark>011</mark>	1 <mark>001</mark>	1 <mark>011</mark>
00	0000	0 <mark>010</mark>	1 <mark>000</mark>	1 <mark>010</mark>
	00	01	10	11

Single-dimension indexing of spatial data

- One-dimensional orderings
 - Mapping multidimension to one dimension
 - preserve spatial proximity
- Insert Z-elements into a B-Tree (single dimension indexing structure) (cf. UB-Tree) as spatial keys in lexicographical order (z-order)
- Range & containment queries (with rectangle r) are then simplified
 - Because of the proximity-preserving of z-ordering (spatial co-locality)
 - Find z-elements of r (covering z-elements)
 - For each z-element (z) in the covering scan the part of the B-tree leaf sequence containing z as a prefix (filter step)
 - Apply the actual geometrical operation (costly) to check for containment (refine step)
 - False positives

- Partition the space with a uniform grid
- Attaching numbers to cells so that **neighboring** cells have similar numbers

Spatial query optimizer for NoSQL

- MongoDB router forwards requests to few shards, pruning the search space
- Overlay the embedding space with a fixed-grid network
 - Generate a geohash covering and a list of interacting points
 - Impose B-tree index on the geohash covering & the interacting spatial points

Quadtree

- Very popular spatial indexing structure
 - A form of **grid** indexing with varying sizes of grid cells that depend on the data **distribution** (i.e., **density** of the spatial objects)
- Each node in the tree covers a **bounding box** for part of the embedding space being indexed,
 - root node covers the entire embedding space

Quadtree

- **Recursive** division of the embedding **space** into **quadrants** (four subdivisions) until each quadrant hosts a prespecified number of points
- Each node
 - A leaf node containing indexed spatial points, or
 - An internal node, having exactly four children (Quad), one child for each quadrant obtained by recursively halving the area in both directions

PR quadtree insertion

- Recursive decomposition so that only one single point in each leaf node
- approximately half of the leaf nodes will contain no data field

PR quadtree point search

Search for (34,28)

PR quadtree region search

- Search for points that are at most 15 units far from the search point Q (40,40)
- Even C does not fall within the circle, we have to search the NW quadrant, because part of the circle is enclosed within it!

Geohash

- For geocoding points as a short string and use them in web URLs
 - It is basically a binary string, with every character indicating alternating divisions of a longitude/latitude rectangle
- Split the rectangle into two equal sized splits with Geohash codes ("0" and "1").
 - Objects residing on left have Geohash beginning with '0', while those on right half have a Geohash beginning with "1"
- Assign a plain text (base-32 and base-36) encoding
 - The length of Geohash ranges from 1 to 12 → longer Geohash has a granular precision (covering smaller area)

Image source

Geohash covering

S2 explained

- framework for decomposing the unit sphere into a hierarchy of cells
 - Hierarchical decomposition of sphere into cells
 - approximate regions using cells
 - cell edges appear to be curved
 - straight lines on the sphere (similar to the routes that airplanes fly)
- Levels (number of times the cell has been subdivided (starting with a face cell))
 - range from 0 to 30
 - top level → projecting the six faces of a cube onto the unit sphere,
 - lower levels → subdividing each cell into four children recursively

The smallest cells at level 30 are called *leaf cells*; there are 6 * 4³⁰ of them in total, each about 1cm across on the Earth's surface. Image source

Level	Min Area	Max Area
0	85,011,012 km ²	85,011,012 km²
1	21,252,753 km ²	21,252,753 km ²
12	3.31 km ²	6.38 km ²
30	0.48 cm ²	0.93 cm ²

S2 explained (cont.)

- useful for spatial indexing and for approximating regions (polygons) as a collection of cells (S2 coverer)
 - Points (spatial **point** objects) represented as leaf cells
 - Regions (polygons) are represented as collections of cells
 - Each cell is identified uniquely by a **64-bit S2CellId**

approximation of Hawaii as a collection of S2 cells

Google's S2

S2 Coverer for part of Bologna

BOLOGNINA

- S2 cells are ordered sequentially along a space-filling curve
 - S2 space-filling curve

Hotel Savoia Regen

six Hilbert curves linked together to form a single continuous loop over the entire **sphere**

The Hilbert Curve

draw a one-dimensional line that fill every part of a twodimensional space

012

Ospedale Maggiore arlo Alberto Pizzardi Via de' Carracci ecnomat by Bricoman E45 MAMbo - Museo d'Arte Centro Commercia Certosa di Moderna di Bologna Bologna Vialar Bologna SS9 CIRENAICA Bologna Servizi... Esselunga BARCA ale Aldini Palestra McFIT Villa Spada -Giardini Parco pubblico Casa di Cura Villa Lau Margherita comunale SS 65 della Futa Giardini Lunetta Eremo di Ronzano + Gamberini via di Gaibola (BO) Villa Aldrovandi

Image generated by this tool

S2 Cell Hierarchy

- Enumerate cells along a Hilbert space-filling curve
- fast to encode and decode (bit flipping)
- preserves spatial co-locality

S2 Cell ID of a leaf cell (level 30):

Image source

Google's S2

- Geofence Earth with a planet-size cube
- fill each with a Hilbert curve (yellow)
- project the Hilbert curve onto the Earth's surface (red)
 - Efficient approach to represent locations as **single** numbers

Our locations are represented as a specific **point** on a long **line**

Image source

Example S2 covering

- Given a region, find a set of S2 covering cells
- Parameters: max number of cells, max cell level, min cell level
- Max level :13, max cells: 45
- 132587f,1325884,1325888c,132588f,1325894,1 32589c,13258b,13258c1,13258c7,13258c9,132
 58cb,13258eac,1325f35,1325f37,1325f5,1325f
 61,1325f67,132f58b,132f58d,132f593,132f594c, 132f5c4,132f5d1,132f5d7,132f5dc,132f5f,132f6
 4,132f7b4,132f7cc,132f7d4

Max #	Median ratio	Worst ratio
cells	(covering area	
	/ region area)	
4	3.31	15.83
8	1.98	4.03
20	1.42	1.94
100	1.11	1.19

Generated by Region Coverer

Example S2 covering (granular levels)

- Max level :30, max cells: 100
 - finer covering set of S2 cells
 - tradeoff
 - more precise coverage → fewer false positives
 - more cells → added computational complexity
- cell "levels" (meaning size)
- maximum number of cells covering an area

Generated by <u>Region Coverer</u>

Data-driven spatial data structures

- data-driven

 based upon a partitioning of the data items themselves
 - Utilizes spatial **containment** relationship in place of the order of the index.
 - Structures that adapt themselves to spatial object's MBRs

KD Tree insertion

- Recursive decomposition so that only one single point in each leaf node
- approximately half of the leaf nodes will contain no data field

R-tree

- Minimum bounding rectangle (MBR)
 - Group **geographically nearby** objects in same leaf nodes
 - Each node represents the smallest rectangle that encloses child nodes
 - Insertion: Find the node that requires the least expansion to include the new object
- Disk-resident
- Index nodes (internal search nodes) and data (leaf) nodes
 - All leaf nodes on the same level
 - Spatial objects belong to one of the leaf nodes only
 - But MBRs may overlap (a problem) such as R1 and R2
 - If the R-tree is used solely as an index, leaf nodes contain pointers to spatial objects

Another R-Tree example

Another R-Tree example

Efficient range query algorithm

- Indexed data (using R-Tree or PR Quadtree) means that data is represented by MBRs
- So, given the query window MBR, it is easy to do a filter stage first, checking which MBRs from the tree index are contained within the MBR of the query window
 - For each of those branches, we retrieve the spatial objects
 - Apply the refine stage checking whether the candidate truly satisfies the predicate (within, intersects, overlaps, etc.)

R-trees : Search

R-tree, Range Query

Range Query

R-Tree construction

Query window
Range query in R-Tree

Query window

R-Tree example

a query window which does not intersect the **bounding rectangle** cannot intersect any of its contained objects \rightarrow MBR join

R+ - Trees

- Disjoint decomposition of the embedding space
 - No overlaps between MBRs
 - Spatial objects appear in all MBRs they intersect with
- Efficient point query as only one path need to be scanned from root to leaf

Geospatial indexing methods comparison

Index	storage	Efficient query type	Comments
R-tree	Disk-resident	Point, window, kNN	
KD-tree	In-memory	Point, window, kNN	Inefficient for highly skewed data
Quad-tree	In-memory	Point, window, kNN	Inefficient for highly skewed data
Z-curve + B+- tree	Disk-resident	Point, window	Order of Z-curve has an impact on performance

How to choose a spatial data structure

- performance factors
 - Preprocessing Cost. Index construction cost
 - Storage Cost. Index storage
 - Query Cost. The search time or query cost by utilizing the index structure
- Space-driven spatial index → structure of the index is created first, then data is added step-wise
 - Does not require changes to the index structure for insertion
 - Facilitates merging (fusing) heterogeneous data sources indexed with common grid
- Data-driven structures → efficient for storage and faster in search scans, but tied to specific data

Storage and processing of big geospatial data

Example Cloud software frameworks (Geomesa, GeoSpark, GeoFlink, geospatial in MongoDB, GeoSparkViz, HadoopViz, etc.)

Problem

- Big geospatial data
 - GDELT: Global Database of Event, Language, and Tone
 - ~225-250 million records
 - Mobility data is gathered by cell phone providers
 - Millions of records
- How do we handle big vector geospatial data?
 - millions to billions of rows of vector geospatial data (mostly points) arriving every day?

GeoMesa

- Constellation of tools for querying and analytics of big geospatial data on distributed computing systems.
 - Streaming, persisting, managing, and analyzing spatial data at scale, with QoS guarantees
 - Efficient spatial indexing atop HBase, Bigtable and Cassandra storage systems for scalable storage of vector geospatial data (point, line, polygon)
 - Near real time **geospatial data stream processing** atop Apache **Kafka**
 - Supports Apache Spark for geospatial big data stream & batch processing
 - Integrate well with mapping clients (Web Feature/Mapping Service, WFS and WMS)
- In summary, all the Lambda architecture layers are supported, in addition to mapping (geo-visualization)

GeoMesa Architectural Overview

- Scalable, cloud-based data storage
 - Apache **Accumulo**, Apache **HBase**, and Google Cloud **Bigtable**,
- Apache Kafka message broker for streaming data
- Apache Storm for batch distributed processing (replaying) of streaming data with GeoMesa
- Apache Spark for large-scale analytics of stored (batch) and streaming data

Image source

Technology stack supported in GeoMesa

Streaming

Persisting

Analyzing

Lambda Architecture revisited with GeoMesa Geospatial intrinsic support

Generating daily topics

Spatial Analytic Pipeline with GeoMesa encapsulated

Image source

JSON examples for geo-referenced Tweets

{ "geo": null, "coordinates": null, "place": { "id": "07d9db48bc083000", "url": "https://api.twitter.com/1.1/geo/id/07d9db48bc083000.json", "place_type": "poi", "name": "McIntosh Lake", "full_name": "McIntosh Lake", "country_code": "US", "country": "United States", "bounding_box": { "type": "Polygon", "coordinates": [[[-105.14544, 40.192138], [-105.14544, 40.192138], [-105.14544, 40.192138], [-105.14544, 40.192138]]] }, "attributes": { } }

Tweet with Twitter Place

{ "geo": { "type": "Point", "coordinates": [40.74118764, -73.9998279] }, "coordinates": { "type": "Point",
 "coordinates": [-73.9998279, 40.74118764] }, "place": { "id": "01a9a39529b27f36", "url":
 "https://api.twitter.com/1.1/geo/id/01a9a39529b27f36.json", "place_type": "city", "name": "Manhattan",
 "full_name": "Manhattan, NY", "country_code": "US", "country": "United States", "bounding_box": { "type":
 "Polygon", "coordinates": [[[-74.026675, 40.683935], [-74.026675, 40.877483], [-73.910408, 40.877483], [73.910408, 40.683935]]] }, "attributes": { } }

Tweet with exact location

Code source

Example geo-Query

- Find the tweets near Bologna which were re-tweeted eight times at least
- SELECT * FROM tweetsDF WHERE retweetsCount > 8 AND (lat > 44.5 AND lat < 44.7) AND (lon > 11.3 AND lon < 11.5)
- This is inefficient
 - We need specialized libraries

SELECT * FROM tweetsDF, cities WHERE retweetsCount > 8 AND ST_Contains(tweetsDF.geom, city.geom) AND cities = "Bologna"

SELECT * FROM tweetsDF, cities WHERE
retweetsCount > 8
AND ST_dwithin(tweets.geom, city.geom,
3000)
AND cities = "Bologna"

Tweeting while Driving : GeoMesa

Image source

Tweeting while Driving Heatmap: GeoMesa

Geospatial Indexing in GeoMesa

- Dynamic indexing
- Geohash to encode geospatial data
 - The backing datastore of GeoMesa is
 Accumulo
 - Key/value store, with an indexing based or the lexicographical ordering of the keys
 - Requires mapping 2-D coordinates into a single dimension (Accumulo keys)
- Given a query polygon, find the list with minimum number of geohashes covering the polygon
 - Shaded red are Geohashes that constitute prefixes that remain in the result set
 - Dark-shaded geohashes are rejected, because they do not intersect the covering polygon

Geospatial Indexing in GeoMesa

Two basic types based on space-filling curves

- Z2
 - A two-dimensional **Z-order** curve to **index latitude** and **longitude** for **point vector** data.
 - Created if the feature type has the geometry type **Point**.

• xz2

- uses a 2-D implementation of XZ-ordering [1] to index **latitude** and **longitude** for **non-point vector data (lines and polygons)**.
- An extension of Z-ordering designed for spatially objects with extents (i.e., non-point geometries such as line strings or polygons).
- Created if the feature type has a non-Point geometry.