
Designing Distributed Geospatial
Data-Intensive Applications

Ph.D. Course, 2022

Instructors:

Prof. Luca Foschini, Associate Professor &

Dr. Isam Mashhour Al Jawarneh, Postdoctoral Research Fellow

{isam.aljawarneh3, Luca.foschini}@unibo.it

Department of Computer Science and Engineering (DISI), Università di Bologna

Part 2
Designing highly efficient geospatial

data-intensive solutions

27th July 2022

GeoMesa Spark spatial join

• GDELT is an archive containing location-indexed events from broadcast,
print, and web news media worldwide dating back to 1979 until today

• FIPS Codes (shapefile) are Federal Information Processing Standard
Publication codes, which uniquely identify counties (polygons) in the USA

• GDELT is a point geometries data set
• How to tell which county each point belongs

• By join GDELT points with the county that contains them from the
FIPS shapefile → seems familiar?! (Point in Polygon)

• But which kind of join?!
• Join in distributed settings is costly

• Remember data shuffling is computationally expensive
• Our target is to avoid shuffling as much as possible

• Load balancing Vs. co-locality when partitioning geospatial data

http://gdeltproject.org/
https://www.census.gov/geo/maps-data/data/cbf/cbf_counties.html

Load balancing (smart city scenario)

Is load balancing alone sufficient?!
Only load balancing = shuffling (huge toll) for co-location queries

In Spark join requires

data to reside on the

same partition

Avoid shuffling

• So, lucky us, the number of counties is small to fit in the fast memory, circa 3000
records

• we can broadcast the counties (polygons)

• In a conventional Spark SQL join, data is typically shuffled around the Spark
Cluster executors depending on the partitioners of the RDDs,

• Join key is a geospatial field, Spark does not provide over-the-counter
partitioner that can partition data in a way that preserves spatial co-locality

• Shuffling data across nodes (and executors) is expensive,
• Broadcasting small data (polygons) to each of the nodes, we obtain performance gain

• Executors have a local copy of the data needed for join computation,
hence shuffling is unneeded.

• only useful for small broadcast data , such that it fits in the fast memory of
the executors

(dr5r8,1)

(dr5r8,1) (dr5r8,2)

(dr5pr,1) (dr5pr,2)

(dr5pr,1)

(dr5r8,1)

(dr5r8,1) (dr5r8,2)

(dr5pr,1) (dr5pr,2)

(dr5pr,1) (dr5px,2)

(dr5px,1)

(dr5px,1)

(dr5r8,1)

(dr5r8,1) (dr5r8,2)

(dr5pr,1) (dr5pr,2)

(dr5pr,1)

(dr5px,1) (dr5px,2)

(dr5px,1)

Shuffle

(dr5r8,2)

(dr5r8,2)

(dr5r8,2)

(dr5pr,2)

(dr5pr,2)

(dr5pr,2)

(dr5px,2)

(dr5px,2)

(dr5r8,6)
(dr5pr,6) (dr5px,6)

ReduceByKey

Shuffle: key is a

geohash value in

NYC, USA

Scenario: counting

the number of Taxi

rides in each

geohash cell (part

of the NYC

geohash covering)

Geospatial data

co-locality in

partitioning is

essential: sending

geometrically

nearby objects to

same partitions

GeoMesa with Spark

val f = ff.bbox("geom", -180, -90, 180, 90,

"EPSG:4326") val q = new Query("gdelt", f)

val queryRDD =

spatialRDDProvider.rdd(new

Configuration, sc, params, q, None)

//Project (in the relational sense)
the SimpleFeature to a 2-tuple

of (GeoHash, 1)

val discretized = queryRDD.map { f =>

(geomesa.utils.geohash.GeoHash(f.getDefaultGe

ometry.asInstanceOf[Point], 25), 1) }

//Then, group by grid cell and count the number of

features per cell.

val density = discretized.reduceByKey(_ + _)

density.collect.foreach(println)

Code and Image source

https://www.geomesa.org/documentation/stable/tutorials/spark.html

val fipsDF = spark.read.format("geomesa") .options(fipsParams) .option("geomesa.feature", "fips") .load()

val gdeltDF = spark.read.format("geomesa") .options(gdeltParams) .option("geomesa.feature", "gdelt")
.load()

import org.apache.spark.sql.functions.broadcast

val joinedDF = gdeltDF.join(broadcast(fipsDF), st_contains($"the_geom", $"geom"))

st_contains takes two geometries as input, and it outputs whether the

second geometry lies within the first one.

Code source

sending the FIPS data to each of the executors, then joining the two data sets

based on whether the GDELT event occurred in the county

https://www.geomesa.org/documentation/stable/tutorials/broadcast-join.html

Aggregation

• A density map showing the
distribution of GDELT events in the US

• Group the data on FIPS
(polygons) code

• Counts distinct number of GDELT
events (geospatial data points)
in each polygon.

• The result is used to generate a
geo-visualization of the event
density in each county (polygon)

• Spatial join is essential!

Image Source

https://www.geomesa.org/documentation/2.0.2/tutorials/broadcast-join.html

Another spatial join example in GeoMesa

• NYC Taxi (points) is taxi trips data from NYC Taxi and Limo
Commission

• GeoNames (polygons) is a geo-database consisting of
circa 10 million geographical names

• Analysis that requires join
• “Do taxi pickups centralize near certain points of interest?”,

• “Are people more likely to request a pickup or be dropped off at
points of interest?”.

• Join the two data sets (points, polygons) and aggregate
geo-statistics over the result

https://databank.illinois.edu/datasets/IDB-9610843
http://www.geonames.org/

Spatial non-equijoin

• GeoNames (POI) is a data set of points, and NYC Taxi offers the
pickup and drop-off points of a taxi trip

• it is unlikely that a trip starts or ends exactly on the labeled point
of interest

• So, equijoin is impossible

• D-within (within distance) join → points (GeoNames and taxi
trips) are within some tolerable distance of one another.

example
val joinedDF = geonamesNY .select(st_bufferPoint($"geom",

lit(50)).as("buffer"), $"name", $"geonameId") .join(taxiDF,

st_contains($"buffer", $"pickup_point"))

st_contains takes two geometries as input, and it outputs whether the second

geometry lies within the first one.

st_bufferPoint takes a point and a distance in meters as input, and it outputs a

circle around the point with radius equal to the provided distance.

two UDFs
Code source

transforms the geometry of each GeoName point into a circle with a radius of 50

meters and joins the result with the taxi records that had pickups anywhere in that

circle

Now we have a DataFrame where each point of interest (region, polygon) in New

York is combined with a taxi record (spatial object, point) where a pickup was

issued from approximately that location.

https://www.geomesa.org/documentation/stable/tutorials/dwithin-join.html

Example: geo-stats

turn this into meaningful statistics about taxi habits in

the region, we can do a GROUP BY operation and use

some of SparkSQL’s aggregate functions

val aggregateDF = joinedDF.groupBy($"geonameId")

.agg(first("name").as("name"), countDistinct($"trip_id")).as(s"numPickups"),

first("buffer").as("buffer"))

groups the data based on POI and counts the

number of distinct pickups

Top-N: Which POIs are popular depart locations, sort the results and look at the

top ten

val top10 = aggregateDF.orderBy($"numPickups".desc).take(10)

top10.foreach { row => println(row.getAs[String]("name") +

row.getAs[Int]("numPickups")) }

Hotel Gansevoort has the most taxi pickups

Code source

https://www.geomesa.org/documentation/stable/tutorials/dwithin-join.html

Image source

https://www.geomesa.org/documentation/stable/tutorials/dwithin-join.html

Filter-and-refine approach for spatial join

• Based on dimensionality reduction

- Compute MBR for every point

- Compute MBR covering of the
embedding area

- Perform a cheap equi-join to find
which points fall within the
embedding area (filter)

- Use the ray casting algorithm to
exclude false positives (refine)

• Adopted by Spark’s Magellan and
Geomesa

Filter-refine spatial join with Spark on GeoMesa: with
QoS guarantees

• >200M NYC taxi trips

Table source

https://databricks.com/notebooks/GeoMesa-NYC-Taxis.html

Geospatial data skewness

• ~110M pickups are in a single
geohash (Manhattan)

Figure source

https://databricks.com/notebooks/GeoMesa-NYC-Taxis.html

Polygon Data

• NYC Neighborhood Polygon Data

Table source

Image source

https://databricks.com/notebooks/GeoMesa-NYC-Taxis.html
https://databricks.com/notebooks/GeoMesa-NYC-Taxis.html

• We want to associate each pickup (point) with the appropriate NYC taxi

zone (polygon)

• This "if point is within polygon" query predicate would require

comparision of >200M points to ~250 polygons in our example.

(i.e. worst case 50,000,000,000 expensive comparisons)

• To constain joins we are leveraging the

precomputed geohash information to significantly "prune" the solution

space.

• We then evaluate the geospatial predicate st_contains($"polygon",

$"pickupPoint") (to filter out false positives)

•

• get all GeoHashes Intersecting a Polygon

• Add the `polygon` Geometry Column using GeoMesa +
explode intersecting GeoHashes

Table source

https://databricks.com/notebooks/GeoMesa-NYC-Taxis.html

Efficient spatial join

• Spatial Join: predicate = Point within Polygon

• Trips → spatial points

• neighborhoodsDF → polygons

• === → filter stage

• st_contains → refinement stage (ray casting) → expensive

val joined = trips.join(neighborhoodsDF.as("R"),

// short circuit on geohash and apply geospatial predicate

when necessary $"L.pickup_geohash_25" === $"R.geohash"

&& st_contains($"polygon", $"pickupPoint"))

Table source

https://databricks.com/notebooks/GeoMesa-NYC-Taxis.html

Geo-visualization of spatial join results

Image source
Map Pickup Density by Neighborhood

https://databricks.com/notebooks/GeoMesa-NYC-Taxis.html

Summary: GeoMesa

• GeoMesa also provides RDD API, DataFrame API and Spatial SQL API so that
the user can run spatial queries on Apache Spark.

• supports range query and join query.

• use R-Tree spatial partitioning technique to decrease the computation
overhead.

• uses a grid file as the local index per DataFrame partition. Grid file is a
simple 2D index but cannot well handle spatial data skewness in contrast to
R-Tree or Quad-Tree index.

• does not remove duplicates introduced by partitioning the data and
hence cannot guarantee
join query accuracy.

• GeoMesa does not support parallel map rendering. Its user has to collect the
big dataset to a single machine then visualize it as a low resolution map
image.

Apache Sedona (previously GeoSpark)

• Apache Sedona is a cluster computing system (full-fledged) for loading, processing and
analyzing large-scale spatial data.

• Extends existing Cloud-based computing systems, such as Apache Spark and Apache
Flink,

• Extends the core engine of Apache Spark and SparkSQL to support spatial data types,
indexes, and geometrical operations at scale.

• Extends the Resilient Distributed Datasets (RDDs) concept to support spatial data.

• Out-of-the-box Spatial Resilient Distributed Dataset (SRDD), which provides in-house
support for geometrical and distance operations necessary for processing
geospatial data

• Spatial RDD provides an Application Programming Interface (API) for Apache Spark
programmers to easily develop their spatial analysis programs using operational
(e.g., Java and Scala) and declarative (i.e., SQL) languages

• Map visualization function of GeoSpark creates high resolution maps in parallel

(GeoSparkViz)

Sedona (previously GeoSpark)

• Over-the-counter distributed Spatial Datasets and Spatial SQL that efficiently
load, process, and analyze large-scale spatial data in distributed computing
environments

• ETL , partitioning, indexing, in-memory storing are supported intrinsically in
GeoSpark and do not need direct intervention of the user, leaving the
logistics handling to the underlying engine

• Consists of three layers: Spark Layer, Spatial RDD Layer and Spatial Query
Processing Layer

• Spatial RDD Layer → three novel Spatial Resilient Distributed Datasets
(SRDDs) which extend plain Spark RDD for supporting geometrical and
spatial objects with data partitioning and indexing (pointRDD,
RectangleRDD, PolygonRDD)

• Spatial Query Processing Layer executes spatial queries (e.g., Spatial Join)
on SRDDs

• spatial aggregation, autocorrelation and co-location

GeoSpark Layered architecture
• The Spatial Resilient Distributed Dataset (SRDD) Layer

• Extends Spark with Spatial RDDs (SRDDs) which efficiently
partitions spatial data objects across a Spark computing
cluster

• The Spatial Query Processing Layer

• Execute spatial query predicates on Spatial RDDs

• Efficient implementation of common spatial query
predicates, e.g., range, distance, spatial k-nearest
neighbors, range join (within) and distance join (within
distance).

• Novel optimizer that considers the running time cost and
shuffles several queries to select a performant query
execution plan

• Two types of optimizations

(1) cost-based join query optimization: selecting the
fastest spatial join algorithm depending on Spatial
RDDs input size

(2) Predicate pushdown: detect the spatial predicates
which filter the spatial data and push them down
to the beginning of the spatial query plan (near
data sources) to reduce data size and avoid
shuffling as much as possible

Apache
Sedona
architecture

Image source

https://sedona.apache.org/

spatial RDD
• PointRDD: 2D Point objects

(representing points on the surface

of the earth), and their format is as

follows: <Longitude, Latitude>

• RectangleRDD: regularly sized

rectangular objects, format:

<PointA(Longitute, Latitude),

PointB(Longitute, Latitude)>

• PolygonRDD: irregularly sized format

: <PointA(Longitute,Latitude),

PointB(Longitute,Latitude), PointC…>

+---+-----------------+
| id| geom |
+---+------------------+
1	POINT (21 52)
1	POINT (23 42)
1	POINT (26 32)
+---+------------------+

+---+--+
|id |geom |
+---+--+
|1 |MULTIPOINT ((19.511463 51.765158), (19.446408 51.779752)) |
+---+---+

+---+--+
|id |geom |
+---+--+
|1 |LINESTRING (10 10, 20 20, 10 40)|
+---+---+

+---+---+
|id |geom |
+---+---+
|1 |POLYGON ((19.51121 51.76426, 19.51056 51.76583, 19.51216 51.76599, 19.5128 51.76448, 19.51121 51.76426)) |
+---+---+

What is missing!
• Heterogeneous data sources

• Various file (CSV, GeoJSON , NetCDF, GRIB and ESRI Shapefile)

• Spark does not over-the-counter understand those formats for spatial

data.

• Spatial partitioning

• Default data partitioner in Spark does not preserve the spatial proximity

objects (spatial co-locality)

• Spatial indexing

• Spark does not natively support spatial indexing such (e.g., Quad-Tree

and R-Tree).

• Maintaining a tree-based spatial index imposes additional 15% storage

space overhead

• A global spatial index for all spatial objects in the master node of

the computing cluster is not a good idea

Example challenge in native Spark

Spatial KNN query: 20 nearest neighbor objects for a query point
(5.0, 7.0) from points table

SELECT * FROM points

ORDERED BY (points .x – 5.0) * (points .x – 5.0) +

(points .y - 7.0) * (points .y - 7.0)

LIMIT 20.

Partitioning

• State-of-the-art spatial data partitioning techniques:

uniform grid, R-tree, Quad-Tree, and KDB-Tree.

• Partitions data based upon the spatial proximity

among

spatial objects to achieve load balancing in the

Spark cluster

• Partitions a Spatial RDD in accordance with spatial

data distribution

• Group spatial objects into the same partition based

upon their spatial proximity (spatial proximity

preservation)

• Spatial partitioning speeds up spatial join query

• A performant spatial partitioning approach keeps

Spatial RDD partitions load-balanced

Image source

tweets in U.S.A

https://ieeexplore.ieee.org/document/7498357

Spatial-aware partitioning in GeoSpark

• Step 1: Building a global spatial grid file

• Samples Spatial RDDs in partitions to Spark

master → a subset of entire Spatial RDD

• The subset has the same data distribution

of the original Spatial RDD

• Load balancing & spatial locality

(objects space proximity) are preserved

• after sampling, a spatial data structures

is applied to divide the sampled data

into partitions at the Spark master node

(Uniform Grid , tree-based - R-Tree,

Quad-Tree, KD-Tree)

• Tree-based → collects the leaf

node boundaries into a grid file

Worker 2

Worker 3

Worker 4

PointRDD
<-73.99, 40.75>
<-73.8, 40.76>
<-73.98, 40.76>
<-73.95, 40.71>

PointRDD
<-73.99, 40.73>
<-73.98, 40.75>
<-73.77, 40.64>
<-73.95, 40.76>

master

Worker 1

PointRDD
<-73.99, 40.75>
<-73.8, 40.76>
<-73.77, 40.64>
<-73.95, 40.76>

Uniform Grid

R-Tree

Partition 1 Partition 2

P1

P2

Spatial-aware partitioning in GeoSpark (cont.)

• Step 2: Assigning a grid cell ID to each

object

• After building a global grid file, check the

grid cell to which each spatial objects

belongs (PIP test), then repartition the

Spatial RDD considering the grid cells IDs

• Broadcast the grid files to every original

Spatial RDD partition in worker nodes

• Check every local spatial object against

the grid file. Store the result in a new

Spatial RDD in the <Key, Value> format

• If a local spatial object intersects

(spatial predicate) a grid cell, assign

a grid cell ID to the object with the

<cell ID, object> format

Worker 2

Worker 3

Worker 4

PointRDD
<-73.99, 40.75>
<-73.8, 40.76>
<-73.98, 40.76>
<-73.95, 40.71>

PointRDD
<-73.99, 40.73>
<-73.98, 40.75>
<-73.77, 40.64>
<-73.95, 40.76>

master

Worker 1

PointRDD
<-73.99, 40.75>
<-73.8, 40.76>
<-73.77, 40.64>
<-73.95, 40.76>

Uniform Grid R-Tree

Partition 1 Partition 2

P1

P2

SpatialRDD
<1, point1>
<2, point2>
<1, point3>

Spatial-aware partitioning in GeoSpark (cont.)

• Step 3: Re-partitioning SRDD across the

cluster

• repartition the Spatial RDD by Key

(grid cell ID)

• spatial objects with same Key

(falling within the same grid cell

are sent to the same partition

(spatial co-locality, preserving

proximity).

• Huge data shuffling across the

cluster

Worker 2

Worker 3

Worker 4

PointRDD
<-73.99, 40.75>
<-73.8, 40.76>
<-73.98, 40.76>
<-73.95, 40.71>

PointRDD
<-73.99, 40.73>
<-73.98, 40.75>
<-73.77, 40.64>
<-73.95, 40.76>

master

Worker 1

PointRDD
<-73.99, 40.75>
<-73.8, 40.76>
<-73.77, 40.64>
<-73.95, 40.76>

Uniform Grid R-Tree

Partition 1 Partition 2

P1

P2

SpatialRDD
<1, point1>
<2, point2>
<1, point3>

Summary of spatial data partitioning in GeoSpark

• We have one global grid for data partitioning

• Spatial proximity is preserved as it follows:

• Divide the embedding space into non-equally sized grid cells

which construct a global grid file

• Check each object in the SpatialRDD and attach this object to

the grid cell with which it intersects

• Preserving spatial proximity guarantees reducing the data shuffling

across the cluster worker nodes and avoiding geometrical

calculations on partitions that do not have relevant data

SRDD Indexing
• R-tree → groups nearby objects (preserving spatial proximity) and represent

them with a MBR in the next higher-level node of the tree

• Objects MBRs that do not intersect with a higher-level node MBR can not

intersect with any of the objects in its lower-levels (child nodes)

• Spatial objects are organized using their MBRs instead of their real geometries

• Queries utilizing the spatial index respect the filter-refinement approach

• Filter → search for candidate spatial objects MBRs that intersect (or

are contained within) with the query object’s MBRs (MBR-join, cheap)

• Refinement → check the spatial relation between

the candidate objects (resulted from the MBR-join) and the query

object (real geometries) and retrieve only spatial objects (real

geometries) that geometrically satisfy the required spatial relationship

(within, intersect, etc.,)

• Spatial IndexRDDs → quadtree and R-tree

• Local indexes (local spatial indexes, e.g., R-Tree or Quad-Tree) are

created for each SRDD data partition

• based on a tradeoff between indexing overhead (space & time) and

query selectivity

• speed up performance gain

Source

https://jiayuasu.github.io/files/paper/geospatial-icde-2019.pdf

Table source

https://jiayuasu.github.io/files/paper/GeoSpark_Geoinformatica_2018.pdf

Spatial Query Processing

• Supports spatial queries (e.g., Range query and Join query) for large-scale spatial datasets

• range query, distance query, K Nearest Neighbors (KNN) query, range join query (within
predicate) and distance join query (within distance predicate)

• leverages the grid partitioned Spatial RDDs spatial indexing

• Spatial Range Query

• Load target dataset,

• partition data,

• create a spatial index on each SRDD partition, if necessary,

• broadcast the query window to each SRDD partition,

• broadcasts the query window to each machine in the cluster

• check the spatial predicate in each partition, and

• if a spatial index exists, it follows the Filter and Refine model

• truly qualified spatial objects are returned as the partition of

• remove spatial objects duplicates that existed due to the data partitioning phase

Spatial range query in GeoSpark

Algorithm source

https://jiayuasu.github.io/files/paper/GeoSpark_Geoinformatica_2018.pdf

Worker 2

Worker 3

Worker 4

PointRDD
<-73.99, 40.75>
<-73.8, 40.76>
<-73.98, 40.76>
<-73.95, 40.71>

PointRDD
<-73.99, 40.73>
<-73.98, 40.75>
<-73.77, 40.64>
<-73.95, 40.76>

master

Worker 1

PointRDD
<-73.99, 40.75>
<-73.8, 40.76>
<-73.77, 40.64>
<-73.95, 40.76>

Uniform Grid R-Tree

Partition 1 Partition 2

P1

P2

SpatialRDD
<1, point1>
<2, point2>
<1, point3>

Spatial range query in GeoSpark
(heuristic overview)

Query window

MBR-join

Intersects? → yes

Apply

spatial

predicate

PIP test

1

2

3

Example range query in GeoSpark

Spatial query: find all counties that are within the given polygon

spatialDf = sparkSession.sql(

"""

|SELECT *

|FROM spatialdf

|WHERE ST_Contains (ST_PolygonFromEnvelope(1.0,100.0,1000.0,1100.0), newcountyshape)

""".stripMargin)

spatialDf.createOrReplaceTempView("spatialdf")

spatialDf.show()

Code source

val rangeQueryWindow = new Envelope(-90.01, -80.01, 30.01, 40.01)

val considerBoundaryIntersection = false // Only return gemeotries fully covered by the window

val buildOnSpatialPartitionedRDD = false // Set to TRUE only if run join query

spatialRDD.buildIndex(IndexType.QUADTREE, buildOnSpatialPartitionedRDD)

val usingIndex = true

var queryResult = RangeQuery.SpatialRangeQuery(spatialRDD, rangeQueryWindow,

considerBoundaryIntersection, usingIndex)

S
R

D
D

A
P

I

S
Q

L
A

P
I

The output format → another SpatialRDD.

Source code

https://sedona.apache.org/archive/tutorial/sql/
https://sedona.apache.org/archive/tutorial/rdd/#use-spatial-indexes

Spatial Join Query algorithm in GeoSpark

• Partition data from two input SRDDs and create

local spatial indexes

• Join the two SRDDs by their keys (grid cell IDs) →

MBR-join

• Calculates the spatial relations of candidates

(refine)

P1
P1

P2

P4 P4

P3 P3

P2

SRDD A (stations) SRDD B (pickup points)

P1

P2

P4

P3

Merged SRDD

the data in

Partition1 from A

are disjoint from

all B’s partitions
(except 1) →

they belong to

different grid

cells

merge partition

1 from A and B

into a bigger

partition with

two sub-

partitions

p
 1

 in
 A

 →
al

l t
ax

i s
ta
ti
o
n
s

in
 c

el
l 1

p
 1

 in
 B

 →
al

l t
ax

i p
ic
ku
p
s

in
 c

el
l 1

range join query :The pickup point falls inside the taxi

stop station

P1
P1

P2

P4 P4

P3 P3

P2

SRDD A (stations) SRDD B (pickup points)

P1

P2

P4

P3

Merged SRDD

p
 1

 in
 A

 →
al

l t
ax

i s
ta
ti
o
n
s

in
 c

el
l 1

p
 1

 in
 B

 →
al

l t
ax

i p
ic
ku
p
s

in
 c

el
l 1

P1

P2

P4

P3MBR-Join

Filter stage

local join

P1
P1

P2

P4 P4

P3 P3

P2

SRDD A (stations) SRDD B (pickup points)

P1

P2

P4

P3

Merged SRDD

p
 1

 in
 A

 →
al

l t
ax

i s
ta
ti
o
n
s

in
 c

el
l 1

p
 1

 in
 B

 →
al

l t
ax

i p
ic
ku
p
s

in
 c

el
l 1

P1

P2

P4

P3MBR-Join

R
e

fi
n

e
st

a
g

e

partition-level

local join

Use each spatial object in the sub-partition A as a query window to query the

index of the sub-partition from B

Worker 2

Worker 3

PointRDD
<-73.99, 40.75>
<-73.8, 40.76>
<-73.98, 40.76>
<-73.95, 40.71>

PointRDD
<-73.99, 40.73>
<-73.98, 40.75>
<-73.77, 40.64>
<-73.95, 40.76>master

Worker 1

polygonRDD
[<-73.99, 40.75>
<-73.8, 40.76>]

[<-73.77, 40.64>
<-73.95, 40.76>]

Partition 1 Partition 2

P1

P2

Broadcast range spatial join in
GeoSpark

Image source

Join query DAG and data flow

https://jiayuasu.github.io/files/paper/GeoSpark_Geoinformatica_2018.pdf

Range join query examples in GeoSpark

SELECT *

FROM polygondf, pointdf

WHERE ST_Contains(polygondf.polygonshape,pointdf.pointshape)

SELECT *

FROM polygondf, pointdf

WHERE ST_Intersects(polygondf.polygonshape,pointdf.pointshape)

Spatial range join query: Find geometries from A and geometries from B such that

each geometry pair satisfies a certain predicate (contains, intersects)

Most predicates supported by GeoSpark SQL can trigger a range join
All join queries in GeoSparkSQL are inner joins (matching values in both tables)

Code source

https://sedona.apache.org/archive/tutorial/sql/#join-query

Spatial distance join query in GeoSpark

Spatial distance join query: Find geometries from A and geometries from B such that the

internal Euclidean distance of each geometry pair is less or equal than a certain

distance

// fully within a certain distance
SELECT *

FROM pointdf1, pointdf2

WHERE ST_Distance(pointdf1.pointshape1,pointdf2.pointshape2) < 2

// intersects within a certain distance
SELECT *

FROM pointdf1, pointdf2

WHERE ST_Distance(pointdf1.pointshape1,pointdf2.pointshape2) <= 2

Code source

https://sedona.apache.org/archive/tutorial/sql/#join-query

Spatial join in RDD terms: GeoSpark

val considerBoundaryIntersection = false // Only return

geometries fully covered by each query window in

queryWindowRDD

val usingIndex = true

queryWindowRDD.buildIndex(IndexType.QUADTREE,

buildOnSpatialPartitionedRDD)

objectRDD.spatialPartitioning(GridType.KDBTREE)

queryWindowRDD.spatialPartitioning(objectRDD.getPartiti

oner)

val result = JoinQuery.SpatialJoinQueryFlat(objectRDD,

queryWindowRDD, usingIndex,

considerBoundaryIntersection)

Code source

Point,Polygon

Point,Polygon

Point,Polygon

Polygon,Polygon

LineString,LineString

Polygon,LineString

...

Output (PairRDD)

left → geometry from

objectRDD
right → geometry from the

queryWindowRDD

https://sedona.apache.org/archive/tutorial/rdd/#write-a-spatial-join-query

Spatial KNN Query
• uses a heap-based top-k algorithm

• contains two phases: selection and merging (sorting)

• It takes a partitioned SRDD, a point and a number (k) as inputs

• Calculate the nearest objects around query point ,

• in selection phase, for each SRDD partition calculate distances
between every object to query point ,

• Maintain a local heap (local priority queue) by adding/removing
objects based on their distances in relative to the query point

• This priority queue maintains the nearest spatial objects to query
point

• merge results from all partition, keep the nearest K objects that
have the shortest distances to the query point

Algorithm source

https://jiayuasu.github.io/files/paper/GeoSpark_Geoinformatica_2018.pdf

Spatial KNN query in GeoSpark
Spatial kNN query: 5 nearest neighbor of the given polygon

spatialDf = sparkSession.sql(

"""

|SELECT countyname, ST_Distance(ST_PolygonFromEnvelope(1.0,100.0,1000.0,1100.0), newcountyshape) AS
distance

|FROM spatialdf

|ORDER BY distance DESC

|LIMIT 5
""".stripMargin)

spatialDf.createOrReplaceTempView("spatialdf")

spatialDf.show()

Code source

val geometryFactory = new GeometryFactory()

val pointObject = geometryFactory.createPoint(new Coordinate(-84.01, 34.01))

val K = 1000 // K Nearest Neighbors

val buildOnSpatialPartitionedRDD = false // Set to TRUE only if run join query

objectRDD.buildIndex(IndexType.RTREE, buildOnSpatialPartitionedRDD)

val usingIndex = true

val result = KNNQuery.SpatialKnnQuery(objectRDD, pointObject, K, usingIndex)

S
R

D
D

A
P

I
S
Q

L
A

P
I

https://sedona.apache.org/archive/tutorial/sql/

