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GeoMesa Spark spatial join

GDELT is an archive containing location-indexed events from broadcast,
print, and web news media worldwide dafing back tfo 1979 until today

FIPS Codes (shapefile) are Federal Information Processing Standard
Publication codes, which uniquely identify counties (polygons) in the USA
GDELT is a point geometries data set
« How to tell which county each point belongs
« By join GDELT points with the county that contains them from the
FIPS shapefile > seems familiare! (Point in Polygon)
But which kind of join¢!
 Join in distributed settings is costly
« Remember data shuffling is computationally expensive
« Qur target is to avoid shuffling as much as possible
* Load balancing Vs. co-locality when partitioning geospatial data



http://gdeltproject.org/
https://www.census.gov/geo/maps-data/data/cbf/cbf_counties.html

Load balancing (smart city scenario)

In Spark join requires

data to reside on the
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Is load balancing alone sufficient?!
Only load balancing = shuffling (huge toll) for co-location queries



Avoid shuffling

« SO, lucky us, the number of counties is small to fit in the fast memory, circa 3000
records

« we can broadcast the counties (polygons)

* In a conventional Spark SQL join, data is typically shuffled around the Spark
Cluster executors depending on the partitioners of the RDDs,

« Join key is a geospatial field, Spark does not provide over-the-counter
partitioner that can partition data in a way that preserves spatial co-locality
« Shuffling data across nodes (and executors) is expensive,
« Broadcasting small data (polygons) to each of the nodes, we obtain performance gain
« Executors have alocal copy of the data needed for join computation,
hence shuffling is unneeded.

« only useful for small broadcast data , such that it fits in the fast memory of
the executors
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GeoMesa with Spark

val f = ff.bbox("'geom", -180, -20, 180, 90,
"EPSG:4326") val g = new Query('gdelt”, f) =
val queryRDD =
spatialRDDProvider.rdd (new
Configuration, sc, params, g, None)

//Project (in the relafional sense)
the SimpleFeature to a 2-tuple

of (GeoHash, 1)

val discretized = queryRDD.MAP { f =>

(geomesa.utils.geohash.GeoHash (f.getDefaultGe
ometry.asinstanceOf[Point], 25), 1) }

//Then, group by grid cell and count the number of
features per cell.

val density = discretized reduceByKey( + ) Code and Image source
density.collect.foreach(printin)



https://www.geomesa.org/documentation/stable/tutorials/spark.html

val fipsDF = spark.read.format('geomesa”) .options(fipsParams) .option('geomesa.feature”, "fips"’) .load|)
val gdeltDF = spark.read.format(‘geomesa”) .options(gdeltParams) .option('geomesa.feature”, "gdelt”)
Jload|)

import org.apache.spark.sql.functions.broadcast

val joinedDF = gdeltDF.join(broadcast(fipsDF), st_contains($'the_geom", $'geom"))

Code source

st_contains takes two geometries as input, and it outputs whether the
second geometry lies within the first one.

sending the FIPS data to each of the executors, then joining the two data sets
based on whether the GDELT event occurred in the county


https://www.geomesa.org/documentation/stable/tutorials/broadcast-join.html
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« A density map showing the
distribution of GDELT events in the US

« Group the data on FIPS - .
(polygons) code =, Rty
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« Counts distinct number of GDELT
events (geospatial data points)
in each polygon.

* The result is used to generate @
geo-visualization of the event
density in each county (polygon)

 Spatial join is essentiall

Image Source



https://www.geomesa.org/documentation/2.0.2/tutorials/broadcast-join.html

Another spatial join example in GeoMesa

* NYC Taxi (points) is taxi trips data from NYC Taxi and Limo
Commission

- GeoNames (polygons) is a geo-database consisting of
circa 10 milllion geographical names

« Analysis that requires join
« “Do taxi pickups centralize near certain points of intereste”,
« “Are people more likely to request a pickup or be dropped off at
points of intfereste’.

- Join the two data sets (points, polygons) and aggregate
geo-statistics over the result



https://databank.illinois.edu/datasets/IDB-9610843
http://www.geonames.org/

Spatial non-equijoin

« GeoNames (POI) is a data set of points, and NYC Taxi offers the
pickup and drop-off points of a tfaxi trip

* it is unlikely that a trip starts or ends exactly on the labeled point
of interest

« SO, equijoin is impossible
« D-within (within distance) join 2 points (GeoNames and taxi
trips) are within some tolerable distance of one another.



example

val joinedDF = geonamesNY .select(st_bufferPoint($'geom’,
lit(50)).as("buffer"), $'name"”, $'geonameld") .join(taxiDF,
st_contains($'buffer’, $"'pickup_point"))

Code source

two UDFs

st_contains takes two geometries as input, and it outputs whether the second
geometry lies within the first one.

st_bufferPoint takes a point and a distance in meters as input, and it outputs a
circle around the point with radius equal to the provided distance.

transforms the geometry of each GeoName point info a circle with a radius of 50
meters and joins the result with the taxi records that had pickups anywhere in that
circle

Now we have a DataFrame where each point of interest (region, polygon) in New
York is combined with a taxi record (spatial object, point) where a pickup was
iIssued from approximately that location.


https://www.geomesa.org/documentation/stable/tutorials/dwithin-join.html

Example: geo-stats

turn this into meaningful statistics abbout taxi habits in
the region, we can do a GROUP BY operation and use ~ C£ode source
some of SparkSQL’s aggregate functions

val aggregateDF = joinedDF.groupBy($'geonameld"”)
.agg(first('name”).as("name"), countDistinct($"trip_id")).as(s"numPickups"),
first("ouffer”).as("buffer"))

groups the data based on POl and counts the

number of distinct pickups

val top10 = aggregateDF.orderBy ($'numPickups”.desc).take(10)

top10.foreach { row => println(row.getAs[String] (‘'name”) +
row.getAs[Int] ("numPickups")) }

Top-N: Which PQOls are popular depart locations, sort the results and look at the

fop ten Hotel Gansevoort has the most taxi pickups


https://www.geomesa.org/documentation/stable/tutorials/dwithin-join.html
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Image source


https://www.geomesa.org/documentation/stable/tutorials/dwithin-join.html

Filter-and-refine approach for spatial join

-

« Based on dimensionality reduction
- Compute MBR for every point

Embedding Area

- Compute MBR covering of the O N — -
embedding area ® ‘; @—

- Perform a cheap equi-join to find \ )
which points fall within the [m‘aﬁxﬂ“

embedding area (filter)

- Use the ray casting algorithm o
exclude false positives (refine)

« Adopted by Spark’'s Magellan and

Geomesa \

(3)(filter-and-refine)




Filter-refine spatial join with Spark on GeoMesa: with
QoS guarantees

« >200M NYC taxi trips

pickup_datetime

2016-03-26
15:39:13

2016-03-26
17:33:38

2016-03-28
10:47:20

dropoff_datetime passenger_count

2016-03-26 15:51:44 2

2016-03-26 17:45:17 1

2016-03-26 11:03:16 1

trip_distance pickup_longitude P_ dropoff_longitude
1.22 -73.99749755859375 40.756813049316406 -73.9789047241211
3.2 -713.86327362060547 40.76980972290039 -73.91075897216797
2 -73.98033142089844 40.76011276245117  -73.99227905273438

Table source

dropoff_latitude
40.75257110595703

40.772361735371094

40.73797607421875


https://databricks.com/notebooks/GeoMesa-NYC-Taxis.html

count

Geospatial data skewness

* ~110M pickups are in a single
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https://databricks.com/notebooks/GeoMesa-NYC-Taxis.html

Polygon Data

)BJECTID Shape_Leng i Shape_Area LocationlD k

0.116357453189  MULTIPOLYGON (i(-74.184452089999996 40.694995999999904, -74.184468899999999 40.69509499999087, -74.16449799999996 0.0007823067885 Newark Airport 1 EWR
40.69518499999987, -74.18438099999997 40.69587799989989, -74.18428199999994 40.6962108999999, -74.18402099999997
40.697074999999884, -74.18391299999996 40.69750609999986, -74.18375099099997 40.69779499999988, -74.18363399999998
40.6983259999999, -74.18356199999994 40.698451999999875, -74.18354399999998 40.69855999999988, -74.18350799999996
40.69870399999992, -74.18327399999998 40.70008999999958, -74.18315699999994 40.701214999999884, -74.18316599999997
40.702384999999886, -74.16313699999998 40.7026279999999, -74.18309399999998 40.7028529999999, -74.16299499999995
40.70315899999985, -74.18284199999994 40.70346499999989, -74.18264399999998 40.70373499999988, -74.18242799999996
40.70395009999992, -74.18220299999996 40.704139999999896, -74.18203199099994 40.70425699999987, -74.181806999995994
40.7043919999999, -74.18157299999996 40.70449999999988, -74.18132099999997 40.70460799999. .

! 0.43346966679 MULTIPOLYGON (((-73.82337597260663 40.63898704717672, -73.82277105438692 40.63557691408512, -73.82265046764824 0.00486634037837  Jamaica Bay 2 Queens
f N Wayne LAY T S
2 fair Lawn ey L
Table source clel oy HCTH o

\ 1
East grange

* NYC Neighborhood Polygon Data

%

_~_Maplewood
It

/Neﬁarkv -
B :

Image source

Lower New H
York-Bay
e


https://databricks.com/notebooks/GeoMesa-NYC-Taxis.html
https://databricks.com/notebooks/GeoMesa-NYC-Taxis.html

« We want to associate each pickup (point) with the appropriate NYC taxi
zone (polygon)
 This "if point is within polygon" query predicate would require
comparision of >200M points to ~250 polygons in our example.
(i.e. worst case 50,000,000,000 expensive comparisons)

« To constain joins we are leveraging the
precomputed geohash information to significantly "prune” the solution
space.

 We then evaluate the geospatial predicate st_contains($'polygon”,
$"'pickupPoint”) (to filter out false positives)



« get all GeoHashes Intersecting a Polygon

« Add the polygon Geomeftry Column using GeoMesa +
explode intersecting GeoHashes

©

polygon (
Newark Airport MULTIPOLYGON (((-74.18445299999996 40.694995999999904, -74.184485899999999 40.69509499999987, -74.18449799999996 40.69518499999987, ["dr5r8" "dr5pr","dr5px”,"dror2"] dror8

-74.18438099999997 40.69587799999939, -74.18428199999994 40.6962109999999, -74.18402099999997 40.697074999999884, -74.18391299999996

40.69750699999986, -74.18375099999997 40.69779499999988, -74.18363399999993 40.6983253999999, -74.18356199999994 40.698451999999875,

-74.18354399999998 40.69855999999988, -74.18350799999996 40.69370399999992, -74.18327399999998 40.70008999999988, -74.18315699999994

40.701214999999884, -74.18316599999997 40.702384999999886, -74.18313899999998 40.7026279999999, -74.18309399999998 40.7028529999999,

-74.18299499999995 40.70315899999985, -74.18284199999994 40.70346499999989, -74.18264399999998 40.70373499999988, -74.18242799999996

40.70395099999992, -74.18220299999996 40.704139999999896, -74.18203199999994 40.70425699999987, -74.18180699999994 40.7043919999999,

74.18157299999996 40.70449999999938, -74.18132099999997 40.70460799999...

Newark Airport MULTIPOLYGON (((-74.18445298999996 40.694995999998904, -74.18448899999999 40.69509499599987, -74.18449799999996 40.69518499999987, ["dr5r8","dr5pr","dropx","dr5r2"] drbpr
-74.18438099999997 40.69587799999989, -74.18428199999994 40.6962109999999, -74.18402099999997 40.697074999999884, -74.18391299999996

Table source



https://databricks.com/notebooks/GeoMesa-NYC-Taxis.html

Efficient spatial join

 Spatial Join: predicate = Point within Polygon

* Trips = spatial points

* neighbornoodsDF - polygons

- === - filter stage

* st_contains 2 refinement stage (ray casting) > expensive

val joined = trips.join( neighborhoodsDF.as("'R"),

// short circuit on geohash and apply geospatial predicate
when necessary $'L.pickup_geohash_25" === $'R.geohash”
& & st_contains($"polygon”, $"pickupPoint") )



POINT
(-73.99749755859375
40.756813049316406)

POINT
(-73.86327362060547
40.76980972290039)

POINT
(-73.98033142089844
40.76011276245117)

dropoffPoint

POINT drsru
(-73.9789047241211
40.75257110595703)

POINT drorz
(-73.91075897216797
40.772361755371084)

POINT droru
(-73.99227905273438
40.73797607421875)

Table source

pickup_geohash_25

dropoff_geohash_25
draru

drory

droru

o O N Rl

East Chelsea

LaGuardia Airport

Times Sq/Theatre
District


https://databricks.com/notebooks/GeoMesa-NYC-Taxis.html

Geo-visualization of spatial join results
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Image source

Map Pickup Density by Neighborhood


https://databricks.com/notebooks/GeoMesa-NYC-Taxis.html

Summary: GeoMesa

« GeoMesa also provides RDD API, DataFrame APl and Spatial SQL APl so that
the user can run spatial queries on Apache Spark.

* sUpports range query and join query.

« Use R-Tree spatial partitioning fechnique to decrease the computation
overhead.

« uses a grid file as the local index per DataFrame partition. Grid file is a
simple 2D index but cannot well handle spatial data skewness in contrast to
R-Tree or Quad-Tree index.

« does not remove duplicates introduced by partitioning the data and
hence cannot guarantee
join query accuracy.

« GeoMesa does not support parallel map rendering. Its user has to collect the
big dataset to a single machine then visualize it as a low resolution map
image.



Apache Sedona (previously GeoSpark)

« Apache Sedona is a cluster computing system (full-fledged ) for loading, processing and
analyzing large-scale spatial data.
« Extends existing Cloud-based computing systems, such as Apache Spark and Apache
Flink,
« Extends the core engine of Apache Spark and SparkSQL to support spatial data types,
indexes, and geometrical operations af scale.
« Extends the Resilient Distributed Datasets (RDDs) concept to support spatial data.
« Qut-of-the-box Spatial Resilient Distributed Dataset (SRDD), which provides in-house
support for geometrical and distance operations necessary for processing
geospatial data

« Spatial RDD provides an Application Programming Interface (API) for Apache Spark
programmers to easily develop their spatial analysis programs using operational
(e.g., Java and Scala) and declarative (i.e., SQL) languages

« Map visualization function of GeoSpark creates high resolution maps in parallel

(GeoSparkViz)



Sedona (previously GeoSpark)

« Over-the-counter distributed Spatial Datasets and Spatial SQL that efficiently
load, process, and analyze large-scale spatial data in distributed computing
environments

« ETL, partitioning, indexing, in-memory storing are supported infrinsically in
GeoSpark and do not need direct intervention of the user, leaving the
logistics handling to the underlying engine

« Consists of three layers: Spark Layer, Spatial RDD Layer and Spatial Query
Processing Layer

- Spatial RDD Layer - three novel Spatial Resilient Distributed Datasets
(SRDDs) which extend plain Spark RDD for supporting geometrical and
spatial objects with data partitioning and indexing (pointRDD,
RectangleRDD, PolygonRDD)

- Spatial Query Processing Layer executes spatial queries (e.g., Spatial Join)
on SRDDs

 spatial aggregation, autocorrelation and co-location



GeoSpark Layered architecture
« The Spatial Resilient Distributed Dataset (SRDD) Layer

« Extends Spark with Spatial RDDs (SRDDs) which efficiently

partitions spatial data objects across a Spark computing
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« Execute spatial query predicates on Spatial RDDs

Spatial Query Processing Layer

« Efficient implementation of common spatial query

Distance Joinl
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predicates, e.g., range, distance, spatial k-nearest

~\
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neighbors, range join (within) and distance join (within
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distance).

« Novel optimizer that considers the running time cost and
shuffles several queries to select a performant query
execution plan

« Two types of optimizations
(1) cost-based join query optimization: selecting the \

-
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| Spatial Index !
Spatial RDD | Point, Polygon, Line string ... |

Geometrical Operations Library
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4

fastest spatial join algorithm depending on Spatial
RDDs input size

(2) Predicate pushdown: detect the spatial predicates
which filter the spatial data and push them down
to the beginning of the spatial query plan (near
data sources) to reduce data size and avoid
shuffling as much as possible
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https://sedona.apache.org/

spatial RDD

« PointRDD: 2D Point objects oo +
(representing points on the surface | id| geom |
L IR +
of the earth), and their format is as | 1|POINT (21 52)]
follows: <Longitude, Latitude> | 1|POINT (23 42)]
] | 1|POINT (26 32)]
« RectangleRDD: regularly sized e +
rectangular objects, format: e ¥
. . ) lid |geom |
<PointA(Longitute, Latitude), e e e e e +
PointB(Longitute, Latitude)> |1 |MULTIPOINT ((19.511463 51.765158), (19.446408 51.779752)) |
T +
* PolygonRDD: irregularly sized format e +
: <PointA (Longiftute,Latitude), lid |geom |
. . . . o +
PointB(Longitute,Latitude), PointC...> 11 |LINESTRING (10 10, 20 20, 10 40)|
S K e +
L I e +
lid |geom |
L I e +

|1 |POLYGON ((19.51121 51.76426, 19.51056 51.76583, 19.51216 51.76599, 19.5128 51.76448, 19.51121 51.76426)) |
o e +



What is missing!
- Heterogeneous data sources

« Various file (CSV, GeoJSON , NetCDF, GRIB and ESRI Shapefile)
» Spark does not over-the-counter understand those formats for spatial
data.
 Spatial partitioning
« Default data partitioner in Spark does not preserve the spatial proximity
objects (spatial co-locality)
 Spatial indexing

« Spark does not natively support spatial indexing such ( e.g., Quad-Tree
and R-Tree).

* Maintaining a tree-based spatial index imposes additional 15% storage
space overhead

« A global spatial index for all spatial objects in the master node of
the computing cluster is not a good idea



Example challenge in native Spark

Spatial KNN query: 20 nearest neighbor objects for a query point
(5.0, 7.0) from points table

SELECT * FROM points

ORDERED BY (points .x —5.0) * (points .x - 5.0) +
(points .y - 7.0) * (points .y - 7.0)

LIMIT 20.



Partitioning

« State-of-the-art spatial data partitioning techniques:
uniform grid, R-free, Quad-Tree, and KDB-Tree.

« Parfitions data based upon the spatial proximity

among
spatial objects to achieve load balancing in the

Spark cluster

« Partfitions a Spatial RDD in accordance with spatial
data distribution

Image source

« Group spatial objects into the same partition based
upon their spatial proximity (spatial proximity
preservation)

tweefts in U.S.A

« Spatial partitioning speeds up spatial join query
« A performant spatial partitioning approach keeps
Spatial RDD partitions load-balanced


https://ieeexplore.ieee.org/document/7498357

Spatial-aware partitioning in GeoSpark
« Step 1: Building a global spatial grid file

Worker 1
« Samples Spatial RDDs in partitions to Spark - ~
master > a subset of entire Spatial RDD Parfifion 1 Fartition 2
PointRDD PointRDD
« The subset has the same data distribution <-73‘.)9|3, 40.75> <-73(.)s!3, 40.73>
.. . <-73.8, 40.76> <-73.98, 40.75>
of the original Spatial RDD <7398, 40.76> ST 40 G
 Load balancing & spatial locality </3.99,40.71> | | <73.95 40.76>
(objects space proximity) are preserved maste/
« after sampling, a spatial data structures PointRDD = Worker 2
is applied to divide the sampled data <<'_7733f89f' 4409'7765: |:|
into partitions af the Spark master node <-73.77, 40-64>__.l
(Uniform Grid , tree-based - R-Tree, <'73'95<O'76> P2 Worker 3
Quad-Tree, KD-Tree) | | Ra\ 5
- Tree-based > collects theleaf 7 08 . Worker 4
node boundaries into a grid file ™ | on|| [ [EEE OIRE

Uniform Grid :




SpatialRDD
Spatial-aware partitioning in GeoSpark (cont.) | - 583t
« Step 2: Assigning a grid cell ID to each =1 poinis> Worker 1
object "ng i o T
« After building a global grid file, check the ’ ’C DI#\PG”WO“ T“j\ h‘fﬁ“O"
grid cell fo which each spatial objects // “\<-7g?9lgf%> <-7g(.)9'3ﬁ%|.)7§>
belongs (PIP test), then repartition the / <<_7733é>8é 4406 - <-73.98, 40.75%
Spatial RDD considering the grid cells IDs o I' <7395 4071> ZZ?Z 28;?23!
» Broadcast the grid files fo every original 2 'I masfe/ |
. _ . + I =
Spatial RDD partition in worker nodes g, — P1 Worker 2 | | zg;)
« Check every local spatial object against S | <73.99.40.75> D 15
e : e <-73.8, 40.76> G
the grid file. Store the result in a new s | /| e7377 40.64>_i l-§
Spatial RDD in the <Key, Value> format \ =0 078 | 5 Worker 3 I’ e
 |f alocal spaftial object intersects | \ Ra\ " 7
(spatial predicate) a grid cell, assign \ 2@ . B #
a grid cell ID to the object withthe \\ o EE ] [ Work‘@/‘l
<cell ID, object> format Uniform Grid Rree L -’
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Spatial-aware partitioning in GeoSpark (cont.)

 Step 3: Re-partitioning SRDD across the
cluster
 repartition the Spatial RDD by Key
(grid cell ID)
 spatial objects with same Key
(falling within the same grid cell
are sent to the same partition
(spatial co-locality, preserving
proximity).
 Huge data shuffling across the
Cluster
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Summary of spatial data partitioning in GeoSpark

 We have one global grid for data partitioning

« Spatial proximity is preserved as it follows:

* Divide the embedding space into hon-equally sized grid cells
which construct a global grid file

« Check each object in the SpatialRDD and attach this object to
the grid cell with which it intersects

* Preserving spatial proximity guarantees reducing the data shuffling
across the cluster worker nodes and avoiding geometrical
calculations on partitions that do not have relevant data



SRDD Indexing

« R-free 2> groups nearby objects (preserving spatial proximity) and represent
them with a MBR in the next higher-level node of the tree

« Objects MBRs that do not intersect with a higher-level node MBR can not

intersect with any of the objects in its lower-levels (child nodes) Clez gnds
« Spatial objects are organized using their MBRs instead of their real geometries o
« Queries utilizing the spatial index respect the filter-refinement approach

* Filter > search for candidate spatial objects MBRs that intersect (or / ‘ \
are contained within) with the query object’'s MBRs (MBR-join, cheap)

- Refinement - check the spatial relation between -ocal index Local index Local index
the candidate objects (resulted from the MBR-join) and the query
object (real geometries) and retrieve only spaftial objects (real - I

geometries) that geometrically satisfy the required spatial relationship
(within, intersect, etc.,)
« Spatial IndexRDDs = quadtree and R-tree

* Local indexes (local spatial indexes, e.g., R-Tree or Quad-Tree) are
created for each SRDD data partition

« based on a tradeoff between indexing overhead (space & time) and
query selectivity

« speed up performance gain



Spatial Approach | Spatial index- | Queries Optimization Temporal Streaming
data type ing attribute processing
GeoSpark [34], | Generic RDD, Two-level Range, Join, KNN Query optimizer, | Not Not
[33], [137] DataFrame object serializer optimized | optimized
Simba [32] Generic DataFrame| Two-level Range, Join, KNN, | Query optimizer Not Not
KNN join optimized optimized
LocationSpark [29] | Generic DataFrame| Two-level Range, Join, KNN, | Query optimizer Not Not
KNN join optimized optimized
GeoMesa [12]] Generic RDD, Global grid | Range,Join - Not Not
DataFrame| file optimized optimized
Magellan [[17/] Generic DataFrame| - Range,Join - Not Not
optimized optimized
SpatialSpark [33] | Generic RDD Two-level Range, Join - - -
SparkGIS [/] Generic RDD Two-level Range, Join, KNN Resource-aware - -
query rewriter
DST [31] Trajectory | DataFrame| Two-level Similarity search - Not Not
optimized optimized
DITA [27]] Trajectory | DataFrame| Two-level Similarity join Query optimizer Not Not
optimized optimized
SciSpark [20] Satellite | RDD - Filter, Join - Not -
image optimized
GeoSparkViz [36] | Raster RDD - Range, Join, Overlay |- - -
map
Geotrellis [14] Raster RDD - Cropping, Warping, | - Not -
map Map algebra optimized
BinJoin [30] Generic RDD Local index | Join Query optimizer Optimized |-

Source



https://jiayuasu.github.io/files/paper/geospatial-icde-2019.pdf

Feature GeoSpark | Simba Magellan] Spatial | GeoMesa] Spatial Parallel | Hadoo[]
name Spark Hadoop Secondo | GIS
RDD API v X X v v X X X
DataFrame v v v X v X X X
API

Spatial SQL | v/ X X X v v X X

[11, 28]

Query opti- |V v v X v X v X
mization

Complex ge- [V X X X v v X X
ometrical op-

erations

Spatial R-Tree R-Tree X R-Tree | Grid file | R-Tree R-Tree | R-tree
indexing Quad-Tree | Quad-Tree Quad-Tree

Spatial par- | Multiple Multiple Z-Curve | R-Tree | R-Tree | Multiple Uniform | SATO
titioning

[Range / Dis- | vV " 4 v v v v v v
tance query

KNN query |V v X X X v X v
Range / Dis- [V v v v v v v v
tance Join

Table source



https://jiayuasu.github.io/files/paper/GeoSpark_Geoinformatica_2018.pdf

Spatial Query Processing

« Supports spatial queries (e.g., Range query and Join query) for large-scale spatial datasets

* range query, distance query, K Nearest Neighbors (KNN) query, range join query (within
predicate) and distance join query (within distance predicate)

» leverages the grid partitioned Spatial RDDs spatial indexing

- Spatial Range Query
« Load target dataset,
« partition datq,
« create a spafial index on each SRDD partition, if necessary,
« broadcast the query window to each SRDD partition,
« broadcasts the query window to each machine in the cluster

« check the spatial predicate in each partition, and
 If aspatial index exists, it follows the Filter and Refine model
 truly qualified spatial objects are returned as the partition of
« remove spatial objects duplicates that existed due to the data partitioning phase



Spatial range query in GeoSpark

Algorithm 2: Range query and distance query

Data: A query window A, a Spatial RDD B and spatial relation predicate

Result: A Spatial RDD that contains objects that satisfy the predicate
1 foreach partition in the SRDD B do
2

if an index exists then
// Filter phase
3 Query the spatial index of this partition using the window A’s MBR;
// Refine phase
4 Check the spatial relation predicate using real shapes of A and candidate
objects;
else
foreach object in this partition do
Check spatial relation predicate between this object and A;
Record this object if it is qualified;
Generate the result Spatial RDD;

© x99 @

Algorithm source



https://jiayuasu.github.io/files/paper/GeoSpark_Geoinformatica_2018.pdf

Spatial range query in GeoSpark
(heuristic overview)
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Example range query in GeoSpark

Spatial query: find all counties that are within the given polygon

spatialDf = sparkSession.sqgl(

| SELECT *
| FROM spatialdf

| WHERE ST_Contains (ST _PolygonFromEnvelope(1.0,100.0,1000.0,1100.0), newcountyshape)

stripMargin)
spatialDf.createOrReplaceTempView("'spatialdf")
spatialDf.show()

Code source

SQL API

val rangeQueryWindow = new Envelope(-90.01, -80.01, 30.01, 40.01)

val considerBoundarylntersection = false // Only return gemeotries fully covered by the window
val buildOnSpatialPartitionedRDD = false // Set to TRUE only if run join query
spatialRDD.buildindex(IndexType.QUADTREE, builldOnSpatialPartitionedRDD)

val usinglndex = frue

var queryResult = RangeQuery.SpatialRangeQuery(spatialRDD, rangeQueryWindow,

considerBoundarylntersection, usingindex)

Source code

SRDD API

The output format - another SpatialRDD.


https://sedona.apache.org/archive/tutorial/sql/
https://sedona.apache.org/archive/tutorial/rdd/#use-spatial-indexes

Spatial Join Query algorithm in GeoSpark

 Partition data from two input SRDDs and create
local spatial indexes

 Join the two SRDDs by their keys (grid cell IDs) >
MBR-join

» Calculates the spatial relations of candidates
(refine)
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p 1in A = all taxi stations in cell 1
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p 1in A = all taxi stations in cell 1
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Broadcast range spatial join in

GeoSpark
Worker1 @
V.o
Partition 1 \\OO\\?\ Partition 2
PointRDD o‘\\ I PointRDD
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GSJoin I Broadcast Join

With spatial partitioning on two input SRDDs . Without spatial partitioning
g
SROD A - Indexed SRDD B

(repartiioned, cached)Y (repartitioned)

Zip partitions by ID deumgendencr

¢

Intermediate SRDD

Marrow

Query local index \ dependency

e

Result SRDD N e o = e = = = = = e = = - g
\ Join Query / Data Flow

Join guery DAG and data flow

Image source



https://jiayuasu.github.io/files/paper/GeoSpark_Geoinformatica_2018.pdf

Range join query examples in GeoSpark

Spatial range join query: Find geometries from A and geometries from B such that
each geometry pair satisfies a certain predicate (contains, intersects)

Most predicates supported by GeoSpark SQL can trigger a range join

All join queries in GeoSparkSQL are inner joins (matching values in both tables)

SELECT *
FROM polygondf, pointdf
WHERE ST_Contains(polygondf.polygonshape,pointdf.pointshape)

SELECT *
FROM polygondf, pointdf
WHERE ST_Intersects(polygondf.polygonshape,pointdf.pointshape)

Code source



https://sedona.apache.org/archive/tutorial/sql/#join-query

Spatial distance join query in GeoSpark

Spatial distance join query: Find geometries from A and geometries from B such that the
internal Euclidean distance of each geometry pair is less or equal than a certain
distance

// fully within a certain distance

SELECT *

FROM pointdfl, pointdf2

WHERE ST_Distance(pointdfl.pointshapel,pointdf2.pointshape?) < 2

// intersecfts within a certain distance

SELECT *

FROM pointdfl, pointdf2

WHERE ST_Distance(pointdf1.pointshape1,pointdf2.pointshape?) <= 2

Code source



https://sedona.apache.org/archive/tutorial/sql/#join-query

Spatial join in RDD terms: GeoSpark

val considerBoundarylntersection = false // Only return
geometries fully covered by each query window in

queryWindowRDD Output (PairRDD)
val usinglndex = true Point,Polygon
queryWindowRDD.buildindex(IndexType.QUADTREE, Point,Polygon
buildOnSpatialPartitionedRDD) Point,Polygon

Polygon,Polygon
LineString,LineString

objectRDD.spatialPartitioning (GridType . KDBTREE) Polygon,Linestring

queryWindowRDD.spatialPartitioning(objectRDD.getPartifi

oner) left > geometry from
objectRDD

val result = JoinQuery.SpatialloinQueryFlat(objectRDD, right > geometry from the

queryWindowRDD, usingindex, queryWindowRDD

considerBoundarylntersection)
Code source



https://sedona.apache.org/archive/tutorial/rdd/#write-a-spatial-join-query

Spatial KNN Query

» uses a heap-based top-k algorithm
« contains two phases: selection and merging (sorting)

* |t takes a partitioned SRDD, a point and a number (k) as inputs

« Calculate the nearest objects around query point,

* in selection phase, for each SRDD partition calculate distances
between every object to query point,

* Maintain a local heap (local priority queue) by adding/removing
objects based on their distances in relative to the query point

* This priority queue maintains the nearest spatial objects to query
point

* merge results from all partition, keep the nearest K objects that
have the shortest distances to the query point



Algorithm 3: K nearest neighbor (KNN) query

Data: A query center object A, a Spatial RDD B, the number K
Result: A list of K spatial objects

/* Step 1: Selection phase */
foreach partition in the SRDD B do
if an index erists then

Return K nearest neigbors of A by querying the index of this partition;

foreach object in this partition do
Check the distance between this object and A;

Maintain a priority queue that stores the top K nearest neighbors;
/* Step 2: Sorting phase */

8 Sort the spatial objects in the intermediate Spatial RDD C based on their distances
to A;

9 Return the top K objects in C

1
2
3
4 else
5
6
7

Algorithm source



https://jiayuasu.github.io/files/paper/GeoSpark_Geoinformatica_2018.pdf

Spatial KNN query in GeoSpark

Spatial kNN query: 5 nearest neighbor of the given polygon Code source

spatialDf = sparkSession.sgl(

| SELECT countyname, ST_Distance (ST_PolygonFromEnvelope(1.0,100.0,1000.0,1100.0), newcountyshape) AS
distance
| FROM spatialdf
| ORDER BY distance DESC
| LIMIT 5
" stripMargin)
spatialDf.createOrReplaceTempView( 'spatialdf")
spatialDf.show()

val geometryFactory = new GeometryFactory()
val pointObject = geometryFactory.createPoint(new Coordinate(-84.01, 34.01))
val K = 1000 // K Nearest Neighbors

val buildOnSpatialPartitionedRDD = false // Set to TRUE only if run join query
objectRDD.buildindex(IndexType.RTREE, builldOnSpatialPartitionedRDD)

val usinglndex = true
val result = KNNQuery.SpatialKknnQuery(objectRDD, pointObject, K, usingindex)

SRDD API

SQL API


https://sedona.apache.org/archive/tutorial/sql/

