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Urban planning scenario: short-term predictions 
for smart resource management

real-time traffic control system

● Problem:

o Municipalities need to install a set of new monitoring stations. Such as

traffic cameras and sensors to study traffic trends in a metropolitan city.

o They seek to cut costs of installation, repair and maintenance of detectors at junctions

of streets and along freeways.

o Equipping all traffic points with such tools would be expensive.

● Goal:

o To choose representative locations, that are well spread out.

o Which are the best locations to install detectors, VMS, TMVC?

o Need to study the trend, but vehicles pass only once through the detectors; traffic

statistics should be computed very fast.

o Computing statistics for all arriving GPS signal could turn prohibitive during rush hours!

● Solution:

o Spatial Approximate Query Processing (SAQP) is the key.

o Sampling and choosing portions of GPS signals from every potential location.

Exploiting geospatial big 

data for the resource 

management of 

telecommunication 

infrastructure



Motivating Application Scenario

patient

Community 

volunteers

A mixed-workload scenario requiring at least:

• Traffic Light Controller. Actuator decides to 

change lights consistently for ambulance to 

pass

• Smart Real-time Pathfinder. Interactive 

navigation map for ambulances and other 

vehicles

• Real-time Community Detector. Identify 

volunteers' communities in the surroundings of 

the patient

participatory healthcare

➢ Primitive geospatial queries (expensive!)

– Proximity queries 

– Spatial join

– Spatial clustering

– Spatial geo-statistics.

– k-Nearest Neighborhoods)

➢ Data arrives fast during peak hours

➢ Exceeds the capacity of ingestion and processing 

systems 

● Spatial Approximate Query Processing (SAQP)

is the key. Original work source

https://isamaljawarneh.github.io/talks/CAMAD20.pdf


Sampling
• the procedure of selecting a representative portion (could be miniatures) of a population for 

estimating an unknown population quantity, such as an ‘average’ or ‘count’ of a target variable

• Population represents all units in a specific study area

• all persons in a city, where the target of sampling is, for instance, estimating the average
age of persons

• Those estimators are normally associated with a variance measuring their accuracy

• Sampling is pivotal for most statistical studies for various reasons

(1) obtaining a total population could be purely fictional

• For instance, heights of all people in a country

(2) processing a whole population census is computationally challenging

• data arrives in streams, where updating results regularly based on newcomers is pivotal 
for correct time-dependent estimators

• we usually base our estimates on observations arrived so-far and extrapolate our results 

to future times

(3) it’s not even practical to visually plot a summary of billions of observations on boards, such 
as those cases where we generate heat-maps of a natural phenomenon



Sampling (cont.)
• A method is a good or bad sampling method depends on various factors including the sampling 

design and size

• The sampling design is the procedure by which a sample of units or sites is selected

• the sample should be a good representative for the population

• sample constitutes a scaled-down ( ‘microcosm’) of a population mirroring characteristics of the 

population it is representing

• no “perfectly-representative sample”, at least a sample good enough to yield characteristic’s

estimations with a known degree of accuracy or confidence, 

• then the sample is representative

• some sampling designs are bad because if the selection biasedness

• sampling method overlooks some parts of the population by design

• E.g., estimating a percentage of possible voters in the United States who potentially will vote for 

the democratic party in an upcoming election cycle, 

• selection biasedness may render estimates invalid

• sampling causes sampling errors (Standard Errors (SE))

• basing estimates on a sample rather than the population



Sampling (cont.)

• Modeling uncertainty has strong ties with selecting proper sampling designs

• A design that minimizes uncertainty (e.g., standard errors) is plausible 

• values estimated using a sample are close to the real values (i.e., estimated from the 

population with no sampling) for some arbitrary number of sampling permutations, the 

method is considered good, otherwise not

• two most widely used 

• simple random sampling (SRS) , which is a probability design (a.k.a. random sampling 

without replacement) 

• and Simple Stratified Sampling (SSS).

• SRS

• assigning an equal selection probability to each unit in the population, 

• thereafter, assigning labels to each unit and selecting labels randomly until a specific

number of distinct units that is equal to the sample size is selected

• all possible permutations have equal probabilities of being considered as a sample



Sampling (cont.)

• SSS

• selects fractional portions from population units depending on the 
group they belong to 

• Sampling students from schools, we take 50% boys and 50% girls, where 
boys and girls are stratum in this case. 

• The distinction 

• SSS may assign equal inclusion probabilities to each unit in the same 
stratum, but this may differ from other units in other stratum as each 
stratum is treated independently 



Sampling methods
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QoS Tension

latency 

Spatial (Approximate) Query Processing (S(A)QP)

Throughput

Accuracy

Tension

10

Original work source

https://isamaljawarneh.github.io/talks/CAMAD20.pdf


● Stream Processing Engines (SPEs) are

confronted with complex challenges:

✓ fast arriving streaming workloads.

✓ Temporal arrival rate fluctuation

and skewness.

● Can we do better?

✓ After 1 second, we obtain a 99.95

accurate early result, which is

satisfactory for decision making,

which then makes the final exact

result not needed.

Spatial Approximate Query Processing (SAQP) 

Original work source

https://isamaljawarneh.github.io/talks/CAMAD20.pdf


Introduction to Spatial sampling



Spatial Online Sampling 

• formally expressed with a ternary (𝜓, ℑ, ℜ), 

• ℜ is the embedding space (often two- or three-dimensional space) from which 
samples are drawn, 

• ℑ is the sampling frame (i.e., SRS, SSS) overlaying the survey area (i.e., embedding
space), 

• 𝜓 is the statistic for estimating a variable of interest (e.g., ‘total’ and ‘mean’ of a 
parameter in study area)

• The choices of ℑ and 𝜓 heavily affects the goodness of the spatial sampling design

• Those configurations enforce an uncertainty on the spatial sample estimation and the 
common goal is to reach an unbiased estimation with the lowest possible variance, 

• in spatial distribution, is normally achieved by being attuned to the characteristics of 
the spatial data, where the sample is spatially representative and well-spread out over 
the sampling space



Spatial Online Sampling challenges

• Deterministic solutions for data analytics problems do not play well with fast arriving huge 
data streams that are mostly geo-referenced with complex data structures that show 
oscillation in data arrival rates and skewness

• in geo-statistics, approximations that yield plausible error-bounded statistical results are 
acceptable

• well-selected representative sample can be safely exploited for geostatistical analytics 
such as the approximation of target study variables (e.g., ‘average’, ‘total’ and 
‘proportion’)

• observing all items of a population could be intractable, such as observing migrating birds
in a huge location, which are spatially unevenly distributed 

Mobility data. NYC taxicab dataset is highly skewed



Spatial Online Sampling challenges (cont.)

• Preserving spatial co-locality through a sampling design is known to yield better estimates

• A principle that complies with Tobler's first law of geography → nearby spatial objects
are more related than those far apart

• imagine the earth flattened out (i.e., two-dimensional planar irregular grid-like
representation) and sample proportional quantities from each subregion (i.e., cell or 
polygon), 

• known to yield plausible statistical results with reduced estimation errors

• Current Stream Processing Engines (SPEs) with their related spatial-aware extensions and 
plugins focus on striking a weighted balance between few QoS goals (e.g., low-latency
and high-accuracy) 

• by either overprovisioning resources (i.e., scaling in/out) or 

• dropping-off (a.k.a. sampling or shedding) portions from the arriving data, thus loosing 
tiny accuracy for plausible latency gains.

• overprovisioning resources, that are not normally released after a spike, conflicts with 
the target of high resources utilization

• state-of-art SPEs exploit sampling schemes that are basically embracing randomness, 
based mostly on SRS

• rendering them non-attuned for spatial characteristics that surround objects in 
proximate locations



• SRS does not serve the estimation quality QoS target in spatial patchy environment
• spatial objects are normally clumped into few patches (skewness)

• SRS normally unduly chooses random counts with unfair fractions from all cells (stratum)
of the survey area (analogous to strata in stratified sampling)

• geo-near spatial objects have strong ties with contexts of their surroundings (i.e., 
ecological, anthropogony, etc.,)

• selecting geographically spread-out samples is known to affect estimations quality

• geospatially representative samples

• works of the related art consider only static finite populations 
• as opposed to continuous infinite populations that always have superpopulations

• GOAL: designing stratified-like spatial sampling methods that select well-spread out 
proportional spatial samples from irregular regions in the sampling space (polygons)

• requirements → constrained to selecting spatial samples in non-stationary, anisotropy
online settings with temporal fluctuations in arrival rates and skewness, thus the term 
stream sampling (a.k.a. online sampling)

Spatial Online Sampling challenges (cont.)



Data skewness & partitioning challenge
• Some data in specific domains is highly skewed

• Skewness is the asymmetry of a distribution of a variable’s value around 
its mean

• Some keys in the data may have more frequency than others
• Hashing in this case does not help load balancing as few keys may 

dominate the distribution, and will be routed to same partitions, turning 
them into hotspots

• As this is domain-specific problem
• In most cases, it can not be automatically mitigated at the system level
• It, otherwise, need to be managed at the application level

• More logistics handling 

Mobility data. NYC taxicab dataset is highly skewed



Why approximate query processing suffices

Queries search for trends rather than exact numbers

Example → Google Trends ,,,, “World cup” against “Tennis” per region in Jordan (2022)



Spatial approximate query processing in 
the Cloud



The problem

Spark Structures 

Streaming
Sampling is not 

supported

Spark Streaming
SRS, Stratified Sampling

In spatial patchy distributions, where spatial points are 

clumped into few patches, selecting a sample 

depending on Simple Random Sampling (SRS) potentially 

results in inaccurate results is it may tend to select 

disproportional quantities from each patch (area).

Spatial-awareness is 

not supported



• Spatial Approximate Query Processing 
(SAQP) has emerged to solve part of 
the tension between low-latency and 
high-accuracy trade-offs.

• Sampling. Observing a portion of the 
population to calculate an attribute: 
mean, median, range, variance.

• Users are satisfied with 
approximations and are willing to 
trade an error-bounded accuracy
for even a small latency gain.

• In streaming contexts, we do not 
have access to such thing like a 
total population.

Spatial Approximate Query Processing (SAQP)

sample

Incremental 
Approximate 

Result  w/ 
rigorous Error 

bounds  
(accuracy loss)

SAQP

Computing over a sample instead of 
the whole population

Streamin
g source

Service Level 
Objectives:
Latency/through
put targets

Original work source

https://isamaljawarneh.github.io/pubs/Globecom19.pdf


Efficient distributed SAQP system

• Spatial data maintain spatial trends
that affect the observed responses

• spatially representative samples  
→ selecting spatially well-spread
out samples positively affects the 
accuracy of estimators 
(average, median, etc.).

• Example Continuous Query (CQ). 
“measuring the average trip
distance travelled by taxis from 
each borough in NYC, United States”

• Sampling fractions are the same for 
all constituent stratum.

• CQ is incrementalized.

 

QoS requirements
• Balanced Latency/throughput
• High computing resources utilization
• Higher accuracy

df = samplepointDF_SSS.groupBy($"geohash"). 

count().orderBy($"count".desc)

Original work source

https://isamaljawarneh.github.io/pubs/Globecom19.pdf


• Applying ‘filter-and-refine’ 
to solve the PIP test before 
sampling.

• Discarding ‘false
positives’.

• We exactly sample same 
fractions from each 
neighbourhood (borough, 
district, etc.,)

• Yields more accurate 
results.

Spatial online sampling on a coarser level

Extended version

Original work source

https://isamaljawarneh.github.io/pubs/CAMAD20.pdf


Spatial Aware Online Sampling (SAOS): overview

Coarser

Granular

• Nearby points share the same geohash prefixes

• SAOS focuses on SDL preservation
© 2020 Isam Al 
Jawarneh

SAOS% Original work source

https://isamaljawarneh.github.io/pubs/CAMAD20.pdf


Spatial Aware Online Sampling (SAOS): overview

SAOS%

Granular

• Nearby points share the same geohash prefixes

• Only the ‘filter’ stage of the ‘filter-and-refine’!

• SAOS focuses on SDL preservation, but with ‘false positives’

• ‘False positives’ are those tuples that have the same geohash,

but do not belong to the same neighborhood 

• Geohash indexing. An ordering (string

representation) imposed on grid

surface earth planar representation.

• Nearby points share the same geohash prefixes, 

thus reducing the two-dimensional point 

representations to one-dimensional string 

ordering.

Original work source

https://isamaljawarneh.github.io/talks/CAMAD20.pdf


Producing faster 
than consuming →

Congestion!

Typical pipeline architecture w/o SAOS

© 2020 Isam Al 
Jawarneh

Original work source

https://isamaljawarneh.github.io/talks/CAMAD20.pdf


Same serving 
speed, but 
serving less 

data!

The improved architecture w/ SAOS

SQL-alike 
continuous 
geospatial query

© 2020 Isam Al 
Jawarneh

Original work source

https://isamaljawarneh.github.io/talks/CAMAD20.pdf


Spatial Queries Supported

• Single spatial queries (i.e., linear)

• “find the average trip distance travelled by taxis originating from a 
specific district in a metropolitan city”

• SAOS resorts to a stratified-like sampling design, we depend on the theory of 
stratified sampling for estimations (e.g., ‘means’, ‘totals’, etc.,)

• estimating the ‘average’ is formalized as follows. 

• Imagine that we have K geohashes in total (each geohash overlays a 
stratum, imagining both as grid cells), 

• ykj is a value of a jth tuple in geohash k, then 𝑡 (pronounced tau) is a 
population ‘total’ for stratum k, which follows that a population ‘total’ for 
the target parameter y is estimated by SAOS through applying the 
formula

መtSAOS= ෍

k=1

K

tk = ෍

k=1

K

Nkതyk



Spatial Queries Supported

• using SAOS, the average is estimated by applying 

ഥYSAOS= መtSAOS/N = ෍

i=1

I

(Ni/N)തyi

• መtSAOS is the estimated ‘total’ by applying SAOS,

• N is the number of tuples received thus far, 

• Ni is the number of tuples received heretofore in stratum i, 

• തyi is the incremental ‘average’ in stratum i calculated up to 
now



Spatial Queries Supported

• “calculate the ‘average’ trip distance travelled through all taxi trips 
in NY City, USA every minute”

• For SRS baseline, we first apply, to estimate the ‘mean’

ത𝑌𝑆𝑅𝑆 = ൗσ𝑘∈𝑆𝑅𝑆 𝑦𝑘
𝑛

• where 𝑦𝑖 are the values of target variables in every time window, 𝑛 is 
the size of the sample in every time window

data.where(“city = NY”).groupBy(window(“time”,”60 

seconds”).avg(“trip_distance”)



stateful spatial online aggregation queries (i.e., ensembles)

• Online aggregations (as opposed to static batch counterpart )requires managing state between 
batch intervals

• Top-N (a.k.a. top-K) online aggregations

• SAOS is applied to arriving spatial points , 

• thereafter they are grouped by geohash keys (Also it is possible to group on a coarser level such 
as neighborhoods, boroughs, or districts), 

• and then a count predicate is applied calculating tuples number for every geohash
incrementally and a sorting function is applied in a descending style.

“which are the top-10 boroughs in NYC where people tend to order 

green taxi pickups”

val sampleStatistics = sample .groupBy($"borough ", window($"time", "1 minute"))

.count().orderBy($"count".desc)

val query = sampleStatistics.writeStream

.queryName("statistics")…start()

statistics.select($"borough",$"count").limit(10)



Quantifying the Uncertainty Associated with Sampling

• Estimating target variables by sampling instead of the population is naturally bounded to 
an uncertainty

• should be quantified to measure the ability of the sampling design in achieving the 
QoS goals

• Online spatial sampling that resorts to stratified-like sampling design → theory of 
stratification applies. 

• rely on the theory of stratified sampling and the theory of random sampling for 
quantifying the uncertainty of applying spatial queries in (linear) to estimate target
variables



Quantifying the Uncertainty Associated with Sampling (cont.)

• estimations of the accuracy of approximations for single queries that are obtained by 
applying stratified-like online sampling instead of  SRS

ොv መtSAOS = ෍

k=1

K

(𝑁𝑘– nk/Nk) (Nk
2sk

2/nk)

• Where nk is the number of tuples thus far in stratum k, 

• Nk is the total number of items up to now in all strata,

• sK
2 is the standard deviation in stratum k. 

• All those magnitudes are calculated incrementally

• to compute an estimated variance for the estimated total → incorporate the result in an 
equation to estimate a variance for the estimated average of the target variable, by 
applying

ොv ഥYSAOS = ොv መtSAOS /N2

Where ොv ഥYSAOS is the estimated variance of the estimated mean, ොv መtSAOS is the 

estimated variance of the estimated total



Quantifying the Uncertainty Associated with Sampling (cont.)

Thereafter, we compute standard error (SE) depending on 

SE ഥYSAOS = ොv ഥYSAOS

we carry the value obtained of SE and apply it in

ഥYSAOS ∓ zα/2SE(ഥYSAOS)

In order to approximate 100 1− α % confidence interval (CI) of the population mean ഥYpop, where zα/2 is 

the upper 𝜶/𝟐 point of normal distribution

Thereafter we define relative error. SE measures sampling distribution variability (not to be confused with 
standard deviation, which measures the variability on points level)

RE = zα/2(SE(ഥYSAOS)/ഥYSAOS)

The intuition behind this adjusted error metric is that values of SE metric are normally small, so we have 
used a relative error as a representative that preserves the same SE trend but being more meaningful



Quantifying the Uncertainty Associated with Sampling (cont.)

• We also define an accuracy loss
accLoss = |estimatedMean – trueMean| / trueMean

• We also define the gain by applying SAOS instead of the 
SRS-based baseline

gainSAOS =ොv ഥYSAOS /ොv ഥYSRS
where ොv ഥYSAOS is the estimated variance resulted by 

applying SAOS, whereas ොv ഥYSRS is the estimated variance

resulted by applying an SRS baseline



Quantifying the Uncertainty Associated with Sampling (cont.)

• apply the following equations from the theory of SRS to calculate the 
estimated variance estimated average and other quantities

• calculate the estimated variance of the estimated mean

෠𝑉(ത𝑌𝑆𝑅𝑆) = (( ൗ𝑁 − 𝑛
𝑁)(

ൗ𝑠
2

𝑛)

N is the total number of records arrived at the system at the time of 
computation, 𝑠2 is the incrementalized variance calculated from the 
sample drawn thus far

calculate the standard error

SE ത𝑌𝑆𝑅𝑆 = ෠𝑉 ത𝑌𝑆𝑅𝑆

calculate a relative error
RE = zα/2(SE ത𝑌𝑆𝑅𝑆 / ത𝑌𝑆𝑅𝑆)



Quantifying the Uncertainty Associated with Sampling (ranking geo-statistics)

• online spatial stateful aggregations (specifically Top-K) queries

• measure every method ability in preserving an original ranking that 

would be obtained if we have access to a population or a 

superpopulation

• online stateful aggregations → compute by sampling instead of 

population

• apply a Spearman's rank correlation coefficient (read Spearman's rho)

• A measure for statistical dependency between the ranking of two

variables in a dataset



Quantifying the Uncertainty Associated with Sampling (ranking geo-statistics) --- cont.

• our application of rho

• collect the ranks (i.e., orderings), 

• and once the spatial CQ stops (i.e., shutdown by user, or depending on a query window 

semantics) we take the collected orderings of the original aggregations (i.e., those that would 

result from a  population without sampling, we consider the total number of tuples emitted by the 

sources at that point as the population)

• and the ranking that is calculated by applying the online sampler (same applies to SRS baseline) 

• Then we serve those figures to Spearman’s rho and apply

ρrg= covariance(ranknosampling, ranksampling) / (σrank
nosampling

. σrank
sampling

)

where ρrg (i.e., rho) is spearman’s correlation coefficient applied for ranking statistics , 

covariance(ranknosampling, ranksampling) is the covariance of the rank variables, 

σ𝑟𝑎𝑛k
nosampling

and σ𝑟𝑎𝑛𝑘
sampling

are the standard deviations of the rank variables, without and with 

sampling, respectively



Summary of geo-statistics

“average trip distance 

travelled by taxis in 

Rome, Italy during the 

last three months”

Online 

continuous 

query

Incremental 

geo-stats

error bounds (e.g., 

relative error RE) and 

spearman’s rho

ത𝑌𝐸𝑥−𝑆𝐴𝑂𝑆 =
Ƹ𝑡𝐸𝑥−𝑆𝐴𝑂𝑆
N

= ෍

𝑖=1

𝐼
𝑁𝑖
𝑁
ത𝑦𝑖

𝑅𝐸 =
𝑧𝛼/2𝑆𝐸(ത𝑌𝐸𝑥−𝑆𝐴𝑂𝑆)

ത𝑌𝐸𝑥−𝑆𝐴𝑂𝑆

Single 

queries

Stateful 
aggregation

“top-3 boroughs in 

Bologna city in Italy 

where people tend to 

check out shared 

bikes”.

𝑠𝑝𝑎𝑡𝑖𝑎𝑙 𝑖𝑛𝑐𝑟𝑒𝑚𝑒𝑛𝑡𝑎𝑙
Top-N  online 

aggregation function

𝜌𝑟𝑔 =
𝑐𝑜𝑣(𝑟𝑎𝑛𝑘𝑛𝑜𝑠, 𝑟𝑎𝑛𝑘𝑠𝑎𝑚𝑝)

𝜎𝑟𝑎𝑛𝑘𝑛𝑜𝑠 𝜎𝑟𝑎𝑛𝑘𝑠𝑎𝑚𝑝

No pre-knowledge on the streaming geo-statistics is 

required, we depends on incrementalization Original work source

https://isamaljawarneh.github.io/talks/CAMAD20.pdf



